Skip to main content
Log in

Hysteretic Dynamics, Space Magnetization and Offset Boosting in a Third-Order Memristive System

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

In the present contribution, we investigate the dynamics of a third-order memristive system with only the origin as equilibrium point previously proposed in Kountchou et al. (Int J Bifurc Chaos 26(6):1650093, 2016). Here, the nonlinear component necessary for generating chaotic oscillations is designed using a memristor with fourth-degree polynomial function. Standard nonlinear analysis techniques are exploited to illustrate different chaos generation mechanisms in the system. One of the major results in this work is the finding of some windows in the parameters’ space in which the system experiences hysteretic dynamics; characterized by the coexistence of two and four different stable states for the same set of system parameters. Basins of attraction of various competing attractors are plotted showing complex basin boundaries. The magnetization of state space justifies jump between coexisting attractors. Furthermore, the model exhibits offset-boosting property with respect to a single variable. To the best of the authors’ knowledge, these interesting and striking behaviors (coexisting bifurcations and offset-boosting property) have not yet been reported in a third-order memristive system with only one equilibrium point in view of previously published systems with self-excited attractors. Some Pspice simulations are carried out to validate the theoretical analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Anand M, Desrochers RE (2004) Quantification of restoration success using complex systems concepts and models. Restor Ecol 12:117–123

    Google Scholar 

  • Andrew LF, Dongsheng Y, Herbert HCI, Victor S (2012) Hyperchaos in a memristor-based modified canonical Chua’s circuit. Int J Bifurc Chaos 22(6):1250133

    MATH  Google Scholar 

  • Carroll TL, Pecora LM (1998) Using multiple attractor chaotic systems for communication. In: Proc. ICECS’

  • Chen C, Chen J, Bao H, Chen M, Bao B (2019) Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons. Nonlinear Dyn. https://doi.org/10.1007/s11071-019-04762-8

    Article  Google Scholar 

  • Chua LO (1971) Memristor—the missing circuit element. IEEE Trans Circuit Theory 18:507–519

    Google Scholar 

  • Chua LO, Kang M (1976) Memristive devices and systems. Proc IEEE 64:209–223

    MathSciNet  Google Scholar 

  • Corinto F, Ascoli A (2012) Memristive diode bridge with LCR filter. Electron Lett 48(14):1

    Google Scholar 

  • Cushing JM, Henson SM, Blackburn C (2007) Multiple mixed attractors in a competition model. J Biol Dyn 1:347–362

    MathSciNet  MATH  Google Scholar 

  • Dutta M, Nusse HE, Ott E, Yorke JA (1991) Multiple attractor bifurcations: a source of unpredictability in piecewise smooth systems. arXiv.org/chao-dyn/chao-dyn/9904017

  • Fang Y, Guangyi W, Yiran S, Xiaoyuan W (2016) Coexisting attractors in a memcapacitor-based chaotic oscillator. Nonlinear Dyn. https://doi.org/10.1007/s11071-016-2870-6

    Article  MathSciNet  Google Scholar 

  • Gaurav G, Tamas R (2009) MOS-integrable circuitry for multi-scroll chaotic grid realization: a SPICE-assisted proof. Int J Circuit Theory Appl 37:473–483

    Google Scholar 

  • Hamill DC (1993) Learning about chaotic circuits with SPICE. IEEE Trans Educ 36:28

    Google Scholar 

  • Hilborn RC (1994) Chaos and nonlinear dynamics—an introduction for scientists and engineers. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Jafari S, Sprott JC (2013) Simple chaotic flows with a line equilibrium. Chaos, Solitons Fractals 57:79–84

    MathSciNet  MATH  Google Scholar 

  • Jafari S, Sprott J, Golpayegani SMRH (2013) Elementary quadratic chaotic flows with no equilibria. Phys Lett A 377(9):699–702

    MathSciNet  MATH  Google Scholar 

  • Kengne J (2015) Coexistence of chaos with hyperchaos, period-3 doubling bifurcation, and transient chaos in the hyperchaotic oscillator with gyrators. Int J Bifurc Chaos 25(4):1550052

    MathSciNet  Google Scholar 

  • Kengne J, Njitacke ZT, Kamdoum VT, Negou AN (2015) Periodicity, chaos, and multiple attractors in a memristor-based Shinriki’s circuit. Chaos Interdiscip J Nonlinear Sci 25:103126

    MathSciNet  MATH  Google Scholar 

  • Kengne J, Njitacke ZT, Fotsin HB (2016a) Dynamical analysis of a simple autonomous jerk system with multiple attractors. Nonlinear Dyn 83:751–765

    MathSciNet  Google Scholar 

  • Kengne J, Njitacke ZT, Fotsin HB (2016b) Coexistence of multiple attractors and crisis route to chaos in autonomous third order Duffing–Holmes type chaotic oscillators. Commun Nonlinear Sci Numer Simul 36:29–44

    MathSciNet  Google Scholar 

  • Kengne J, Njitacke ZT, Negou AN, Tsostop MF, Fotsin HB (2016c) Coexistence of multiple attractors and crisis route to Chaos in a novel chaotic jerk circuit. Int J Bifurc Chaos 26(5):1650081

    MATH  Google Scholar 

  • Kengne J, Mogue RLT, Fozin TF, Kengnou Telem AN (2019) Effects of symmetric and asymmetric nonlinearity on the dynamics of a novel chaotic jerk circuit: coexisting multiple attractors, period doubling reversals, crisis, and offset boosting. Chaos Solitons Fractals. https://doi.org/10.1016/j.chaos.2019.01.033

    Article  MathSciNet  Google Scholar 

  • Kountchou M, Louodop P, Bowong S, Fotsin H, Kurths J (2016) Optimal synchronization of a memristive chaotic circuit. Int J Bifurc Chaos 26(6):1650093

    MathSciNet  MATH  Google Scholar 

  • Letellier C, Gilmore R (2007) Symmetry groups for 3D dynamical systems. J Phys A: Math Theor 40:5597–5620

    MathSciNet  MATH  Google Scholar 

  • Leutcho GD, Kengne J (2018) A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors. Chaos, Solitons Fractals 113(2018):275–293

    MathSciNet  Google Scholar 

  • Li C, Sprott JC (2014) Coexisting hidden attractors in a 4-D simplified Lorenz system. Int J Bifurc Chaos 24:1450034

    MathSciNet  MATH  Google Scholar 

  • Li C, Hu W, Sprott JC, Wang X (2015) Multistability in symmetric chaotic systems. Eur Phys J Special Topics 224:1493–1506

    Google Scholar 

  • Li C, Min F, Jin Q, Ma H (2017) Extreme multistability analysis of memristor-based chaotic system and its application in image decryption. AIP Adv 7:125204

    Google Scholar 

  • Lowenberg MH (1998) Bifurcation analysis of multiple attractor flight dynamics. Philos Trans R Soc A Math Phys Eng Sci 356:2297–2319

    MathSciNet  MATH  Google Scholar 

  • Masoller C (1994) Coexistence of attractors in a laser diode with optical feedback from a large external cavity. Phys Rev 50:2569–2578

    Google Scholar 

  • Massoudi A, Mahjani MG, Jafarian M (2010) Multiple attractors in Koper–Gaspard model of electrochemical. J Electroanal Chem 647:74–86

    Google Scholar 

  • Mezatio BA, Motchongom MT, Tekam RT, Kengne R, Tchitnga R, Fomethe A (2019) A novel memristive 6D hyperchaotic autonomous system with hidden extreme multistability. Chaos, Solitons Fractals 120:100–115

    MathSciNet  Google Scholar 

  • Mogue RLT, Kengne J, Nguomkam Negou A (2018) Multistability and chaotic dynamics of a simple Jerk system with a smoothly tuneable symmetry and nonlinearity. Int J Dyn Control. https://doi.org/10.1007/s40435-018-0458-3

    Article  Google Scholar 

  • Nayfeh AH, Balakumar B (1995) Applied nonlinear dynamics: analytical, computational and experimental methods. Wiley, New York

    MATH  Google Scholar 

  • Negou NA, Kengne J (2018) Dynamic analysis of a unique jerk system with a smoothly adjustable symmetry and nonlinearity: reversals of period doubling, offset boosting and coexisting bifurcations. Int J Electron Commun (AEÜ) 90(2018):1–19

    Google Scholar 

  • Njitacke ZT, Kengne J (2019) Nonlinear dynamics of three-neurons-based hopfield neural networks (HNNs): remerging Feigenbaum trees, coexisting bifurcations and multiple attractors. J Circuits Syst Comput 28(7):1950121

    Google Scholar 

  • Njitacke ZT, Kengne J, Fotsin HB, Negou AN, Tchiotsop D (2016) Coexistence of multiple attractors and crisis route to chaos in a novel memristive diode bridge-based Jerk circuit. Chaos, Solitons Fractals 91:180–197

    MATH  Google Scholar 

  • Njitacke ZT, Kengne J, Negou AN (2017) Dynamical analysis and electronic circuit realization of an equilibrium free 3D chaotic system with a large number of coexisting attractors. Optik, Elsevier Edition, 130: 356–364

    MATH  Google Scholar 

  • Njitacke ZT, Kengne J, Wafo Tapche R, Pelap FB (2018a) Uncertain destination dynamics of a novel memristive 4D autonomous system. Chaos, Solitons Fractals 107:177–185

    MathSciNet  MATH  Google Scholar 

  • Njitacke ZT, Kengne J, Fotsin HB (2018b) A plethora of behaviors in a memristor based Hopfield neural networks (HNNs). Int J Dyn Control. 1:2. https://doi.org/10.1007/s40435-018-0435-x

    Article  Google Scholar 

  • Njitacke ZT, Kengne J, Fonzin Fozin T, Leutcha BP, Fotsin HB (2019) Dynamical analysis of a novel 4-neurons based Hopfield neural network: emergences of antimonotonicity and coexistence of multiple stable states. Int J Dyn Control. https://doi.org/10.1007/s40435-019-00509-w

    Article  MathSciNet  Google Scholar 

  • Peng G, Min F, Wang E (2018) Circuit implementation, synchronization of multistability, and image encryption of a four-wing memristive chaotic system. J Electr Comput Eng. Article ID 8649294, https://doi.org/10.1155/2018/8649294

    MathSciNet  Google Scholar 

  • Pershin YV, Di Ventra M (2010) Experimental demonstration of associative memory with memristive neural networks. Neural Netw 23:881–886

    Google Scholar 

  • Pham VT, Jafari S, Volos C, Fortun L (2019) Simulation and experimental implementation of a line–equilibrium system without linear term. Chaos, Solitons Fractals 120:213–221

    MathSciNet  Google Scholar 

  • Pisarchik AN, Feudel U (2014) Control of multistability. Phys Rep 540:167–218

    MathSciNet  MATH  Google Scholar 

  • Qingdu L, Hongzheng Z, Jing L (2014) Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria. Nonlinear Dyn 1:2. https://doi.org/10.1007/s11071-014-1812-4

    Article  Google Scholar 

  • Rajagopal K, Jafari S, Akgul A, Karthikeyan A (2018) Modified jerk system with self-exciting and hidden flows and the effect of time delays on existence of multi-stability. Nonlinear Dyn 1:2. https://doi.org/10.1007/s11071-018-4247-5

    Article  Google Scholar 

  • Sprott JC (2011) A proposed standard for the publication of newchaotic systems. Int J Bifurcat Chaos 21(9):2391–2394

    Google Scholar 

  • Strogatz SH (1994) Nonlinear dynamics and chaos. Addison Wesley, Reading

    Google Scholar 

  • Strukov DB, Snider GS, Stewart GR, Williams RS (2008) The missing memristor found. Nature 453:80–83

    Google Scholar 

  • Thompson JMT, Stewart HB (1986) Nonlinear dynamics and chaos. Wiley, Chichester

    MATH  Google Scholar 

  • Upadhyay RK (2003) Multiple attractors and crisis route to chaos in a model of food-chain. Chaos, Solitons Fractals 16:737–747

    MathSciNet  MATH  Google Scholar 

  • Vaidyanathan S, Volos CK, Kyprianidis IM, Stouboulos IN, Pham VT (2015) Analysis, adaptive control and antisynchronization of a six-term novel jerk chaotic system with two exponential nonlinearities and its circuit simulation. J Eng Sci Technol Rev 8:24–36

    Google Scholar 

  • Vaithiaathan V, Weijun J (1999) “Coexistence of four different attractors in a fundamental power system model. IEEE Trans Circuits Syst I Fundam Theory Appl 46:582–590

    Google Scholar 

  • Wolf A, Swift JB, Swinney HL, Wastano JA (1985) Determining Lyapunov exponents from time series. Phys D 16:285–317

    MathSciNet  MATH  Google Scholar 

  • Yuan F, Deng Y, Li Y, Wang G (2019) The amplitude, frequency and parameter space boosting in a memristor–meminductor-based circuit. Nonlinear Dyn. https://doi.org/10.1007/s11071-019-04795-z

    Article  Google Scholar 

  • Zhou NF, Luo JW, Cai YJ (2001) Implementation and simulation of chaotic behavior of multi-attractor generated by a physical pendulum, (in Chinese). J Zhejiang Univ 28:42–45

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. T. Njitacke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Njitacke, Z.T., Mogue, R.L.T., Kengne, J. et al. Hysteretic Dynamics, Space Magnetization and Offset Boosting in a Third-Order Memristive System. Iran J Sci Technol Trans Electr Eng 44, 413–429 (2020). https://doi.org/10.1007/s40998-019-00231-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-019-00231-5

Keywords

Navigation