Skip to main content

Advertisement

Log in

Abstract

This paper presents a comprehensive control scheme for inverter-based distributed generations (DGs) in grid-connected microgrids (MGs). The proposed control strategy regulates active and reactive power of DGs in order to adjust output voltages of the DGs under balanced/unbalanced loading and fault conditions. In this paper, an adaptive hyper-plane sliding mode controller is developed for positive and negative sequences of active and reactive power in dq0 reference frame based on quasi-dynamic phasor. All the parameters of controllers are derived via particle swarm optimization algorithm in order to minimize an appropriate cost function. This controller is fast, stable and robust against uncertainties of the output filter of the inverter, variations of the network parameters and load disturbances. In addition, the fault ride-through capability of the system can be improved. In the presence of unbalanced loads and faults, output voltages the DG are controlled to remain balanced and unchanged. Performance of the proposed controller is compared with a conventional PI controller and a conventional sliding mode controller. Effectiveness and accuracy of the proposed control strategy are verified through simulating a test microgrid in the presence of unbalanced loads and some faults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ali Z, Christofides N, Hadjidemetriou L, Kyriakides E (2017) Performance enhancement of MAF based PLL with phase error compensation in the pre-filtering stage. In: 2017 IEEE Manchester PowerTech

  • Baimel D, Belikov J, Guerrero JM, Levron Y (2017) Dynamic modeling of networks, microgrids, and renewable sources in the dq0 reference frame: a survey. IEEE Trans 5:21323–21335

    Google Scholar 

  • Belikov J, Levron Y (2017) Comparison of time-varying phasor and dq0 dynamic models for large transmission networks. Electr Power Energy Syst 93:65–74

    Article  Google Scholar 

  • Bhaskara SN, Chowdhury BH (2012) Microgrids-a review of modeling, control, protection, simulation and future potential. In: Power and energy society general meeting. IEEE, pp 1–7

  • Bolognani S, Zampieri S (2013) A distributed control strategy for reactive power compensation in smart microgrids. IEEE Trans Autom Control 58(11):2818–2833

    Article  MathSciNet  Google Scholar 

  • Brabandere KD, Bolsens B, den Keybus JV, Woyte A, Driesen J, Belmans R (2007) A voltage and frequency droop control method for parallel inverters. IEEE Trans Power Electron 22(4):1107–1115

    Article  Google Scholar 

  • Camacho A, Castilla M, Miret J, Vasquez JC, Alarcón-Gallo E (2013) Flexible voltage support control for three-phase distributed generation inverters under grid fault. Trans Ind Electron 60(4):1429–1441

    Article  Google Scholar 

  • Cañizares CA, Palma-Behnke R, Olivares DE, Mehrizi-Sani A, Etemadi AH, Cañizares CA, Iravani R, Kazerani M, Hajimiragha AH, Gomis-Bellmunt O, Saeedifard M, Palma-Behnke R, Jiménez-Estévez GA, Hatziargyriou ND (2014) Trends in microgrid control. IEEE Trans Smart Grid 5(4):1905–1919

    Article  Google Scholar 

  • Chang F, Chang E, Liang T, Chen J (2011) Digital-signal-processor based DC/AC inverter with integral-compensation terminal sliding-mode control. IET Power Electron 4(1):159–167

    Article  Google Scholar 

  • Chen Z, Luo A, Wang H, Chen Y, Li M, Huang Y (2015) Adaptive sliding-mode voltage control for inverter operating in islanded mode in microgrid. Electr Power Energy Syst 66:133–143

    Article  Google Scholar 

  • Chen Z, Luo A, Wang H et al (2016) Adaptive sliding-mode voltage control for inverter operating in islanded mode in microgrid. IEEE Trans Sustain Energy 7(4):1482–1491

    Article  Google Scholar 

  • Delghavi MB, Yazdani A (2017) Sliding-mode control of AC voltages and currents of dispatchable distributed energy resources in master–slave-organized inverter-based microgrids. IEEE Trans Smart Grid 10(1):980–991

    Article  Google Scholar 

  • Delghavi MB, Shoja-Majidabad S, Yazdani A (2016) Fractional-order sliding-mode control of islanded distributed energy resource systems. IEEE Trans Sustain Energy 7(4):1482–1491

    Article  Google Scholar 

  • Gudey SK, Gupta R (2015) Sliding-mode control in voltage source inverter-based higher-order circuits. Int J Electron 102(4):668–689

    Article  Google Scholar 

  • Gudey SK, Gupta R (2016) Recursive fast terminal sliding mode control in voltage source inverter for a low-voltage microgrid system. IET Gener Transm Distrib 10(7):1536–1543

    Article  Google Scholar 

  • Guo X, Liu W, Zhang X et al (2015) Flexible control strategy for grid-connected inverter under unbalanced grid faults without PLL. IEEE Trans Power Electron 30(4):1773–1778

    Article  Google Scholar 

  • Guo X, Liu W, Lu Z (2017) Flexible power regulation and current-limited control of grid-connected inverter under unbalanced grid voltage faults. IEEE Trans Ind Electron 64(9):7425–7432

    Article  Google Scholar 

  • Hatziargyriou N, Asano H, Iravani MR, Marnay C (2007) Microgrids. IEEE Power Energy Mag 5(4):78–94

    Article  Google Scholar 

  • Katiraei F, Iravani R, Hatziargyriou N, Dimeas A (2008) Microgrids management. IEEE Power Energy Mag 6(3):54–65

    Article  Google Scholar 

  • Lee T, Hu S, Chan Y (2013) D-STATCOM with positive-sequence admittance and negative-sequence conductance to mitigate voltage fluctuations in high-level penetration of distributed generation systems. IEEE Trans Ind Electron 60(4):1417–1428

    Article  Google Scholar 

  • Mu C, Tang Y, He H (2017) Improved sliding mode design for load frequency control of power system integrated an adaptive learning strategy. IEEE Trans Ind Electron 64(8):6742–6751

    Article  Google Scholar 

  • Pogaku N, Prodanovic M, Green TC (2007) Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Trans Power Electron 22(2):613–625

    Article  Google Scholar 

  • Rezaei MM, Soltani J (2015) A robust control strategy for a grid-connected multi-bus microgrid under unbalanced load conditions. Int J Electr Power Energy Syst 71:68–76

    Article  Google Scholar 

  • Rocabert J, Luna A, Blaabjerg F, Rodríguez P (2012) Control of power converters in AC microgrids. IEEE Trans Power Electron 27(11):4734–4749

    Article  Google Scholar 

  • Rodriguez P, Timbus AV, Teodorescu R, Liserre M, Blaabjerg F (2007) Flexible active power control of distributed power generation systems during grid faults. IEEE Trans Ind Electron 54(5):2583–2592

    Article  Google Scholar 

  • Schiffer J, Zonetti D, Ortega R, Stankovic AM, Sezi T, Raisch J (2016) A survey on modeling of microgrids—from fundamental physics to phasors and voltage sources. Automatica 74:135–150

    Article  MathSciNet  Google Scholar 

  • Su CL, Teng JH (2007) Economic evaluation of a distribution automation project. IEEE Trans Ind Appl 43(6):1417–1425

    Article  Google Scholar 

  • Su X, Han M, Guerrero JM, Sun H (2015) Microgrid stability controller based on adaptive robust total SMC. Energies 8(3):1784–1801

    Article  Google Scholar 

  • Tang Y, Ju P, He H, Qin C, Wu F (2013) Optimized control of DFIG based wind generation using sensitivity analysis and particle swarm optimization. IEEE Trans Smart Grid 4(1):509–520

    Article  Google Scholar 

  • Teodorescu R, Liserre M, Rodriguez P (2011) Grid converters for photovoltaic and wind power systems. Wiley, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeel Rokrok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rokrok, E., Shavakhi Zavareh, F., Soltani, J. et al. Optimal Controller Design for Inverter-Based Microgrids. Iran J Sci Technol Trans Electr Eng 43, 725–739 (2019). https://doi.org/10.1007/s40998-019-00197-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-019-00197-4

Keywords

Navigation