Skip to main content
Log in

A Fuzzy-Based Controller of a Modified Six-Phase Induction Motor Driving a Pumping System

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

This study presents the implementation and analysis of the modified six-phase induction motor (IM) that drives a centrifugal pumping system. The three-phase IM is modified to operate as a six-phase IM to enhance the torque pulsation and to increase the motor reliability. Dynamic models of six-phase IM are derived. A fuzzy-based procedure for fine-tuning of the PID controller parameters is proposed in order to sustain the motor speed at the predefined reference values. Added to that, a six-phase low-pass filter is designed to eliminate the undesirable harmonics contents. An optimized PID controller accomplished with a scalar V/f closed-loop six-phase induction motor control is presented and its simulation results are discussed. Pulse width modulation (PWM)-based simulation studies were employed for six-phase induction motor using MATLAB/SIMULINK software. The simulation results show that the PWM inverter reduces the THD for current and voltage waveforms and the overall performance of the modified six-phase IM is enhanced compared with the equivalent three-phase induction motor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

J :

Inertia of the system, kg m2

B :

Friction

H :

Total pumping head, m

Q :

Flow rate, m3/h

P h :

Hydraulic power of pump, W

R s , R r :

Stator and rotor resistances, Ω

ω :

Angular speed of arbitrary frame

ω r :

Angular speed of rotor frame

I ds, I qs :

Direct and quadrature axis stator current, A

L ls, L lr :

Stator and rotor inductance of motor, respectively, H

L m :

Magnetization inductance, H

P :

Number of pole pairs

T e :

Electromagnetic torque of the motor, N m

T p :

Constant torque of the pump, N m

V ds, V qs :

Direct and quadrature component of stator voltage, V

V :

Terminal voltage of the array, V

ψ ds, ψ qs :

Direct and quadrature component of stator flux

References

  • Abdelwanis MI, Selim F (2015) A sensorless controller of submersible motors fed from photovoltaic system. In: 17th international middle-east power system conference (MEPCON’15) Mansoura University, Egypt, December 15–17

  • Abdelwanis MI, Selim F, El-Sehiemy RAA (2015) An efficient sensorless slip dependent thermal motor protection schemes applied to submersible pumps. Int J Eng Res Afr 14:75–86

    Article  Google Scholar 

  • Abou E-E, Sehiemy RA, Shaheen AM (2010) Multi-objective fuzzy based procedure for optimal reactive power dispatch problem. In: Proceedings 14th international middle east power systems conference (MEPCON’10), Cairo University, Egypt, pp 941–946

  • Azeddine B, Ghalem B (2010) Six-phase matrix converter fed double star induction motor. Acta Polytech Hung 7(3):163–176

    Google Scholar 

  • Barrero F, Duran MJ (2016a) Recent advances in the design, modeling, and control of multiphase machines—part I. IEEE Trans Ind Electron 63(1):449–458

    Article  Google Scholar 

  • Barrero F, Duran MJ (2016b) Recent advances in the design, modeling and control of multiphase machines—part 2. IEEE Trans Ind Electron 63(1):459–468

    Article  Google Scholar 

  • El Sehiemy RA, El-Ela AAA, Shaheen AAM (2013) Multi-objective fuzzy-based procedure for enhancing reactive power management. IET Gener Transm Distrib 7(12):1453–1460

    Article  Google Scholar 

  • El Sehiemy RA et al (2015) A multi-objective fuzzy-based procedure for reactive power-based preventive emergency strategy. Int J Eng Res Afr 13:91–102

    Article  Google Scholar 

  • El-Ela AAA, Bishr M, Allam S, El-Sehiemy R (2005) Optimal preventive control actions using multi-objective fuzzy linear programming technique. Electr Power Syst Res 74(1):147–155

    Article  Google Scholar 

  • Elhosseini MA, El Sehiemy RA, Salah AH, Abido MA (2017) Modelling and control of an interconnected combined cycle gas turbine using fuzzy and ANFIS controllers. Electr Eng 100(2):763–785. https://doi.org/10.1007/s00202-017-0547-x

    Article  Google Scholar 

  • El-Sehiemy RA, Aleem SHA, Abdelaziz AY, Balci ME (2017) A new fuzzy framework for the optimal placement of phasor measurement units under normal and abnormal conditions. Resour Effic Technol 3:542–549

    Article  Google Scholar 

  • Fatemi SMJR, Abjadi NR, Soltani J, Abazari S (2014) Speed sensorless control of a six-phase induction motor drive using backstepping control. IET Power Electron 7(1):114–123

    Article  Google Scholar 

  • Fnaiech MA, Betin F, Capolino G-A, Fnaiech F (2010) Fuzzy logic and sliding-mode controls applied to six-phase induction machine with open phases. IEEE Trans Ind Electron 57(1):354–364

    Article  Google Scholar 

  • Gautam A, Ojo O, Ramezani M, Momoh O (2012) Computation of equivalent circuit parameters of nine-phase induction motor in different operating modes. In: Energy conversion congress and exposition (ECCE), 2012 IEEE, IEEE, pp 142–149

  • Han WY, Kim SM, Kim SJ, Lee CG (2003) Sensorless vector control of induction motor using improved self-tuning fuzzy PID controller. In: SICE 2003 annual conference, vol 3, IEEE. pp 3112–3117)

  • Ho TJ, Yeh LY (2010) Design of a hybrid PID plus fuzzy controller for speed control of induction motors. In: 2010 the 5th IEEE conference on industrial electronics and applications (ICIEA). IEEE, pp 1352–1357

  • Huang J, Kang M, Yang J, Jiang H, Liu D (2008) Multiphase machine theory and its applications. In: International conference on electrical machines and systems, 2008. ICEMS 2008, IEEE, pp 1–7

  • Kang M, Huang J, Yang J, Liu D, Jiang H (2009) Strategies for the fault-tolerant current control of a multiphase machine under open phase conditions. In: International conference on electrical machines and systems, 2009. ICEMS 2009, IEEE, pp 1–6

  • Kiani-Nezhad R, Nahidmobarakeh B, Baghli L, Betin F, Capolino GA (2008) Modeling and control of six-phase symmetrical induction machines under fault condition due to open phases. IEEE Trans Ind Electron 55(5):1966–1977

    Article  Google Scholar 

  • Kim Hyunbae, Harke Michael C, Lorenz Robert D (2003) Sensorless control of interior permanent-magnet machine drives with zero-phase lag position estimation. IEEE Trans Ind Appl 39(6):1726–1733

    Article  Google Scholar 

  • Kudinov YI, Kolesnikov VA, Pashchenko FF, Pashchenko AF, Papic L (2017) Optimization of fuzzy PID controller’s parameters. Procedia Comput Sci 103:618–622

    Article  Google Scholar 

  • Kumar RA, Daya JF (2013) A novel self-tuning fuzzy based PID controller for speed control of induction motor drive. In: 2013 international conference on control communication and computing (ICCC). IEEE, pp 62–67

  • Kundrotas B, Lisauskas S, Rinkeviciene R (2011) Model of multiphase induction motor. Electron Electr Eng Kaunas Technol 111(5):111–114

    Google Scholar 

  • Lega A, Mengoni M, Serra G, Tani A, Zarri L (2010) General theory of space vector modulation for five-phase inverters. In: IEEE xplore, March 19, pp 237–244

  • Levi E, Bojoi R, Profumo F, Toliyat HA, Williamson S (2007a) Multiphase induction motor drives–a technology status review. IET Electr Power Appl 1(4):489–516

    Article  Google Scholar 

  • Levi E et al (2007b) Multiphase induction motor drives-a technology status review. Electr Power Appl IET 1(4):489–516

    Article  Google Scholar 

  • Lyra ROC, Lipo TA (2002) Torque density improvement in a six-phase induction motor with third harmonic current injection. IEEE Trans Ind Appl 38(5):1351–1360

    Article  Google Scholar 

  • Mandal S (2015) Performance analysis of six-phase induction motor. Int J Eng Res Technol (IJERT) 4(02):589–593

    Google Scholar 

  • Nabi HP, Dadashi P, Shoulaie A (2011) A novel structure for vector control of symmetrical six-phase induction machines with three current sensors. ETASR Eng Technol Appl Sci Res 1(2):23–29

    Google Scholar 

  • Nagaraj P, Kannan V, Santhi M (2014) Modified multiphase induction motor with high starting torque. Int J Innov Res Sci Eng Technol 3(SI 3):519–522

    Google Scholar 

  • Nanoty A, Chudasama AR (2012a) Testing of designed developed prototype six phase induction motor and analysis of problems faced in actual development. IOSR J Electr Electron Eng (IOSR-JEEE):1–6, e-ISSN: 2278-1676, p-ISSN: 2320-3331

  • Nanoty A, Chudasama AR (2012b) Control of designed developed six phase induction motor. Int J Electromagn Appl 2(5):77–84

    Google Scholar 

  • Nanoty A, Chudasama AR (2013) Design, development of six phase squirrel cage induction motor and its comparative analysis with equivalent three phase squirrel cage induction motor using circle diagram. Int J Emerg Technol Adv Eng 3(8):731–737

    Google Scholar 

  • Pant GKSV (2000) Analysis of a multiphase induction machine under fault condition in a phase-redundant AC drive system. Electr Mach Power Syst 28(6):577–590

    Article  Google Scholar 

  • Renukadevi G, Rajambal K (2012) Generalized d-q model of n-phase induction motor drive. Int J Electr Comput Electron Commun Eng 6(9):62–71

    Google Scholar 

  • Renukadevi G, Rajambal K (2013) Modeling and analysis of multi-phase inverter fed induction motor drive with different phase numbers. WSEAS Trans Syst Control 8(3):73–80

    Google Scholar 

  • Scuiller F, Charpentier JF, Semail E, Clénet S (2006) A global design strategy for multiphase machine applied to the design of a 7-phase fractional slot concentrated winding PM machine. In: Proceedings of ICEM, vol 6

  • Singh GK (2002) Multi-phase induction machine drive research—a survey. Electr Power Syst Res 61(2):139–147

    Article  Google Scholar 

  • Sriram Pavan Kumar N, Kalyan Chakravarthi NS (2016) A novel structure for rotor flux and current control of a symmetrical six-phase induction machine. Int J Glob Innov 4(I):35–40

    Google Scholar 

  • Taheri A, Rahmati A, Kaboli S (2012) Comparison of efficiency for different switching tables in six-phase induction motor DTC drive. J Power Electron 12(1):128–135

    Article  Google Scholar 

  • Xia JK, Min L, Liu K (2010) Fuzzy control scheme for vector-controlled multiphase induction motor drive. In: 2010 international conference on digital manufacturing and automation (ICDMA), vol 1. IEEE, pp 757–760

  • Xu J, Feng X, Mirafzal B, Demerdash NA (2006) Application of optimal fuzzy PID controller design: PI control for nonlinear induction motor. In: The Sixth World Congress on intelligent control and automation, 2006. WCICA 2006, vol 1. IEEE, pp 3953–3957

  • Yuanxi W, Yali Y, Guosheng Z, Xiaoliang S (2012) Fuzzy auto-adjust PID controller design of brushless DC motor. Phys Procedia 33:1533–1539

    Article  Google Scholar 

  • Zhao S, Yuan H (2011) Asynchronous motor vector control based on fuzzy adaptive PID controller. In: 2011 IEEE 3rd international conference on communication software and networks (ICCSN). IEEE, pp 677–679

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed I. Abdelwanis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelwanis, M.I., El-Sehiemy, R.A. A Fuzzy-Based Controller of a Modified Six-Phase Induction Motor Driving a Pumping System. Iran J Sci Technol Trans Electr Eng 43, 153–165 (2019). https://doi.org/10.1007/s40998-018-0066-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-018-0066-4

Keywords

Navigation