Skip to main content
Log in

Love Wave Propagation in Viscoelastic Layer Sandwiched Between Fiber-reinforced Layer and Consistent Couple Stress Substrate

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

The problem deals with an investigation about propagation of Love type waves in a geometrical configuration which is composed of a viscoelastic layer sandwiched between fiber-reinforced layer and a substratum. The substratum is modeled using size-dependent consistent couple stress theory which involves a length scale parameter called characteristic length to capture the role of inner microstructures on the behavior of material. The geometric scheme of the problem is an attempt to approximate the inner structure of earth. The dispersion and damping equations are derived analytically for the propagation of Love type waves. The impact of various parameters such as fiber reinforcement parameters, heterogeneity, internal friction parameter, thickness ratio of the layers and microstructural parameter of couple stress substratum are presented on the propagation behavior of Love type waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

6. References

  • Akgoz B, Civaek O (2012) Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory. Meccanica 48(4):863–873

    Article  MathSciNet  Google Scholar 

  • Belfield AJ, Rogers TG, Spencer AJM (1983) Stress in elastic plates reinforced by fibres lying in concentric circles. J Mech Phys Solids 31(1):25–54

    Article  Google Scholar 

  • Carcione JM (1995) Constitutive model and wave equations for linear, viscoelastic, anisotropic media. Geophysics 60(2):537–548

    Article  Google Scholar 

  • Chattopadhyay A, Singh AK, Dhua S (2014) Effect of Heterogeneity and Reinforcement on propagation of a crack due to Shear waves. Int J Geomech 16(2):1–10

    Google Scholar 

  • Chattopadhyay A, Singh P, Kumar P, Singh AK (2018) Study of Love-type wave propagation in an isotropic tri layers elastic medium overlying a semi-infinite elastic medium structure. Waves Random Complex Media 28(4):643–669

    Article  MathSciNet  Google Scholar 

  • Cui J, Du J, Wang J (2014) Effects of viscous liquid on SH wave propagation in layered viscoelastic piezoelectric structure. IEEE 53(3):1971–1974

    Google Scholar 

  • Eringen AC (1968) Theory of micropolar elasticity. In: Liebowitz H (ed) Fracture, vol 2. Academic Press, New York, pp 662–729

    Google Scholar 

  • Georgiadis HG, Velgaki EG (2003) High-frequency Rayleigh waves in materials with micro-structure and couple-stress effects. Int J Solids Struct 40(10):2501–2520

    Article  Google Scholar 

  • Goyal R, Kumar S (2019) Dispersion of Love waves in size-dependent substrate containing finite piezoelectric and viscoelastic layers. Int J Mech Mater Des. https://doi.org/10.1007/s10999-019-09441-5

    Article  Google Scholar 

  • Gubbins D (1990) Seismology and plane tectonics. Cambridge University Press, Cambridge

    Google Scholar 

  • Hadjesfandiari AR, Dargush GF (2011) Couple stress theory for solids. Int J Solids Struct 48(18):2496–2510

    Article  Google Scholar 

  • Kaur T, Kumar S, Singh AK (2018) Love-wave propagation in vertical heterogeneous Fiber-Reinforced stratum imperfectly bonded to a micropolar elastic substrate. Int J Geomech 18(2):1–13

    Article  Google Scholar 

  • Kaur T, Sharma SK, Singh AK (2016) Influence of imperfectly bonded micropolar elastic half-space with non-homogeneous viscoelastic layer on propagation behavior of shear wave. Waves Random Complex 26(4):650–670

    Article  MathSciNet  Google Scholar 

  • Koiter WT (1964) Couple stresses in the theory of elasticity, I and II. Proc Ned Akad Wet B 67:17–44

    MathSciNet  MATH  Google Scholar 

  • Ma Q, Jiao J, Hu P, Zhong X, Wu B, He C (2014) Excitation and detection of shear horizontal waves with electromagnetic acoustic transducers for nondestructive testing of plates. Chin J Mech Engg 27(2):428–436

    Article  Google Scholar 

  • Mindlin RD, Tiersten HF (1962) Effects of couple stresses in linear elasticity. Arch Ration Mech Anal 11:415–488

    Article  MathSciNet  Google Scholar 

  • Nowacki W (1986) Theory of asymmetric elasticity. Pergamon Press, Oxford

    MATH  Google Scholar 

  • Ottosen NS, Ristinmaa M, Ljung C (2000) Rayleigh waves obtained by the intermediate couple stress theory. Eur J Mech A/Solids 19(6):929–947

    Article  Google Scholar 

  • Phan H, Bui TQ, Nguyen HTL, Pham CV (2018) Computation of interface wave motions by reciprocity considerations. Wave Motion 79:10–22

    Article  MathSciNet  Google Scholar 

  • Pramanik A, Gupta S (2016) Propagation of Love waves in composite layered structures loaded with viscous liquid. Proc Eng 144:461–467

    Article  Google Scholar 

  • Ravindra R (1968) Usual assumptions in the treatment of wave propagation in heterogeneous elastic media. PAGEOPH 70(1):12–17

    Article  Google Scholar 

  • Sengupta PR, Ghosh B (1974) Effect of Couple-stresses on the propagation of waves in an Elastic layer. PAGEOPH 112(2):331–338

    Article  Google Scholar 

  • Sengupta PR, Nath S (2001) Surface waves in Fiber-reinforced anisotropic elastic media. Sadhana 26(4):363–370

    Article  Google Scholar 

  • Sharma V, Kumar S (2013) Velocity dispersion in an elastic plate with microstructure: effects of characteristic length in couple stress model. Meccanica 49(5):1083–1090

    Article  MathSciNet  Google Scholar 

  • Sharma V, Kumar S (2016) Influence of microstructure, heterogeneity and internal friction on SH waves propagation in a viscoelastic layer overlying a couple stress substrate. Struct Eng Mech 57(4):703–716

    Article  Google Scholar 

  • Sharma V, Kumar S (2018a) Effects of microstructure and liquid loading on velocity dispersion of leaky Rayleigh waves at liquid–solid interface. Can J Phys 96(1):11–17

    Article  MathSciNet  Google Scholar 

  • Sharma V, Kumar S (2018b) Dispersion of Rayleigh waves in a microstructural couple stress substrate loaded with liquid layer under the effects of gravity. Arch Acoust 43(1):11–20

    MathSciNet  Google Scholar 

  • Sharma V, Kumar S (2019) Microstructural and viscous liquid loading effects on the propagation of Love waves in a piezomagnetic layered structure. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2019.1702235

    Article  Google Scholar 

  • Simonetti F, Cawley P (2004) On the nature of shear horizontal wave propagation in elastic plates coated with viscoelastic materials. Proc R Soc Lond-A 460(2048):2197–2221

    Article  Google Scholar 

  • Ten ST, Hashim U, Gopinath SCB, Liu WW, Foo KL, Sam ST, Rahman SFA, Voon CH, Nordin AN (2017) Highly sensitive escherichia coli shear horizontal surface acoustic wave biosensor with silicon dioxide nanostructures. Biosens Bioelectron 93:146–154

    Article  Google Scholar 

  • Toupin RA (1962) Elastic materials with couple-stresses. Arch Ration Mech Anal 11:385–414

    Article  MathSciNet  Google Scholar 

  • Vaishnav PK, Kundu S, Abo-Dahab SM, Saha A (2017) Love wave behaviour in composite fiber-reinforced structure. Int J Geomech 17(9):1–7

    Google Scholar 

  • Vardoulakis I, Georgiadis HG (1997) SH surface waves in a homogeneous gradient-elastic half-space with surface energy. J Elast 47:147–165

    Article  MathSciNet  Google Scholar 

  • Voigt W (1887) Theoretische Studien über die Elastizitätsverhältnisse der Kristalle (Theoretical studies on the elasticity relationships of crystals). Abh. Gesch, Wissenschaften, p 34

    Google Scholar 

  • Wu TT, Liu YH (1999) On the measurement of anisotropic elastic constants of fiber-reinforced composite plate using ultrasonic bulk wave and laser generated lamb wave. Ultrasonics 37(6):405–412

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deep, S., Sharma, V. Love Wave Propagation in Viscoelastic Layer Sandwiched Between Fiber-reinforced Layer and Consistent Couple Stress Substrate. Iran J Sci Technol Trans Mech Eng 46, 225–235 (2022). https://doi.org/10.1007/s40997-020-00411-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-020-00411-3

Keywords

Navigation