Skip to main content
Log in

Abstract

Transverse vibrations of axially moving beams with multiple concentrated masses have been investigated. It is assumed that the beam is of Euler–Bernoulli type, and both ends have simply supports. Concentrated masses are equally distributed on the beam. This system is formulated mathematically and then sought to find out approximate solutions. In case of three-to-one internal resonance, analytical solutions are derived by means of method of multiple scales (a perturbation method). It is assumed that axial velocity of the beam is harmonically varying around a mean-constant velocity. Steady-state vibration characteristics are investigated from the amplitude-phase modulation equations. Then, the effects of both magnitude and number of the concentrated masses on nonlinear vibrations are investigated numerically in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abrate AS (1992) Vibration of belts and belt drives. Mech Mach Theory 27:645–659

    Article  Google Scholar 

  • Adessi D, Lacarbonara W, Paolone A (2005) Free in-plane vibrations of highly buckled beams carrying a lumped mass. Acta Mech. doi:10.1007/s00707-005-0259-6

    MATH  Google Scholar 

  • Chang CH (2000) Free vibration of a simply supported beam carrying a rigid mass at the middle. J Sound Vib 237(4):733–744

    Article  Google Scholar 

  • Chen SJ, Huang JL, Sze KY (2007) Multidimensional Lindstedt–Poincaré method for nonlinear vibration of axially moving beams. J Sound Vib 306:1–11

    Article  Google Scholar 

  • Chin C-M, Nayfeh AH (1999) Three-to-one internal resonances in parametrically excited hinged-clamped beams. Nonlinear Dyn 20:131–158

    Article  MathSciNet  MATH  Google Scholar 

  • Ding H, Chen LQ (2011) Equilibria of axially moving beams in the supercritical regime. Arch Appl Mech 81:51–61

    Article  MATH  Google Scholar 

  • Ding H, Zhang GC, Chen LQ (2011) Supercritical equilibrium solutions of axially moving beams with hybrid boundary conditions. Mech Res Commun 38:52–56

    Article  MATH  Google Scholar 

  • Fung R-F, Lu P-Y, Tseng C-C (1998) Non-linearly dynamic modeling of an axially moving beam with a tip mass. J Sound Vib 218(4):559–571

    Article  Google Scholar 

  • Ghayesh MH, Amabili M (2013) Post-buckling bifurcations and stability of high-speed axially moving beams. Int J Mech Sci 68:76–91

    Article  Google Scholar 

  • Ghayesh MH, Kafiabad HA, Reid T (2012) Sub- and super-critical nonlinear dynamics of a harmonically excited axially moving beam. Int J Solid Struct 49:227–243

    Article  Google Scholar 

  • Ghayesh MH, Amabili M, Farokhi H (2013) Global dynamics of an axially moving buckled beam. J Vib Control 0:1–14

    MATH  Google Scholar 

  • Hassanpour PA, Cleghorn WL, Mills JK, Esmailzadeh E (2007) Exact solution of the oscillatory behavior under axial force of a beam with a concentrated mass within its interval. J Vib Control 13(12):1273–1739

    Article  MathSciNet  MATH  Google Scholar 

  • Huang JL, Su RKL, Li WH, Chen SH (2011) Stability and bifurcation of an axially moving beam tuned to three-to-one internal resonances. J Sound Vib 330:471–485

    Article  Google Scholar 

  • Hwang SJ, Perkins NC (1992a) Supercritical stability of an axially moving beam part I: model and equilibrium analyses. J Sound Vib 154:381–396

    Article  MATH  Google Scholar 

  • Hwang SJ, Perkins NC (1992b) Supercritical stability of an axially moving beam part II: vibration and stability analyses. J Sound Vib 154:397–409

    Article  Google Scholar 

  • Lacarbonara W, Arafat HN, Nayfeh AH (2005) Nonlinear interactions in imperfect beams at veering. Nonlinear Mech 40:987–1003

    Article  MATH  Google Scholar 

  • Lin W, Qiao N (2008) Vibration and stability of an axially moving beam immersed in fluid. Int J Solid Struct 45:1445–1457

    Article  MATH  Google Scholar 

  • Marynowski K, Kapitaniak T (2014) Dynamics of axially moving continua. Int J Mech Sci 81:26–41

    Article  Google Scholar 

  • Miranda EC, Thomsen JJ (1998) Vibration induced sliding: theory and experiment for a beam with a spring-loaded mass. Nonlinear Dyn 16:167–186

    Article  MATH  Google Scholar 

  • Mote CD Jr (1965) A study of band saw vibrations. J Frankl Inst 279:430–444

    Article  Google Scholar 

  • Nayfeh AH (1981) Introduction to perturbation techniques. Willey, New-York

    MATH  Google Scholar 

  • Öz HR (2003) Natural frequencies of axially travelling tensioned beams in contact with a stationary mass. J Sound Vib 259:445–456

    Article  Google Scholar 

  • Oz HR, Pakdemirli M (2006) Two-to-one internal resonances in a shallow curved beam resting on an elastic foundation. Acta Mech 185:245–260

    Article  MATH  Google Scholar 

  • Özkaya E (2002) Non-linear transverse vibrations of a simply supported beam carrying concentrated masses. J Sound Vib 257:413–424

    Article  Google Scholar 

  • Pan L, Qiao N, Lin W, Liang Y (2005) Stability and local bifurcation in a simply-supported beam carrying a moving mass. Acta Mech Sol Sin 20(2):123–129. doi:10.1007/s10338-007-0715-z

    Google Scholar 

  • Parker RG (1999) Supercritical speed stability of the trivial equilibrium of an axially-moving string on an elastic foundation. J Sound Vib 221:205–219

    Article  MATH  Google Scholar 

  • Pellicano F, Vestroni F (2002) Complex dynamics of high-speed axially moving systems. J Sound Vib 258(1):31–44

    Article  Google Scholar 

  • Sahoo B, Panda LN, Pohit G (2015) Two frequency parametric excitation and internal resonance of a moving viscoelastic beam. Nonlinear Dyn 82(4):1721–1742

    Article  MathSciNet  Google Scholar 

  • Sahoo B, Panda LN, Pohit G (2016) Combination, principal parametric and internal resonances of an accelerating beam under two frequency parametric excitation. Int J Nonlinear Mech 78:35–44

    Article  Google Scholar 

  • Sarigul M, Boyaci H (2010) Nonlinear vibrations of axially moving beams with multiple concentrated masses part I: primary resonance. Struct Eng Mech 36(2):149–163

    Article  Google Scholar 

  • Siddiqui SAQ(1998) Nonlinear beam behavior with a moving mass. Ph.D. thesis, University of Waterloo, Waterloo, ON, Canada

  • Ulsoy AG, Jr Mote, Syzmani R (1978) Principal developments in band saw vibration and stability research. Holz Roh Werkst 36:273–280

    Article  Google Scholar 

  • Verichev SN, Metrikine AV (2003) Instability of vibrations of a mass that moves uniformly along a beam on a periodically inhomogeneous foundation. J Sound Vib 260:901–925

    Article  Google Scholar 

  • Wang YQ, Huang XB, Li J (2016) Hydroelastic dynamic analysis of axially moving plates in continuous hot-dip galvanizing process. Int J Mech Sci 110:201–216

    Article  Google Scholar 

  • Wickert JA (1992) Non-linear vibration of a traveling tensioned beam. Int J Nonlinear Mech 27:503–517

    Article  MATH  Google Scholar 

  • Wickert JA, Mote CD (1988) Current research on the vibration and stability of axially moving materials. Shock Vib Dig 20(5):3–13

    Article  Google Scholar 

  • Yan QY, Ding H, Chen LQ (2015) Nonlinear dynamics of axially moving viscoelastic Timoshenko beam under parametric and external excitations. Appl Math Mech 36:971–984 (English edition)

    Article  MathSciNet  MATH  Google Scholar 

  • Yang XD, Chen LQ (2006) Non-linear forced vibration of axially moving viscoelastic beams. Acta Mech Sol. Sin 19:365–373

    Article  Google Scholar 

  • Yang TZ, Yang XD (2013) Exact solution of superciritical axially moving beams: symmetric and anti-symmetric configurations. Arch Appl Mech 83:889–906

    Article  Google Scholar 

  • Yang XD, Zhang W (2014) Nonlinear dynamics of axially moving beam with coupled longitudinal-transversal vibrations. Nonlinear Dyn 78(4):2547–2556

    Article  MathSciNet  Google Scholar 

  • Zhang GC, Ding H, Chen LQ, Yang SP (2012a) Supercritical forced response of coupled motion of a nonlinear transporting beam. Nonlinear Dyn 70:2407–2420

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang GC, Ding H, Chen LQ, Yang SP (2012b) Galerkin method for steady-state response of nonlinear forced vibration of axially moving beams at supercritical speed. J Sound Vib 331:1621–1623

    Google Scholar 

  • Zhou D, Ji T (2006) Dynamic characteristics of a beam and distributed spring-mass system. Int J Solid Struct 43:5555–5569

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Sarıgül.

Appendix

Appendix

$$\begin{aligned} f & = \sum\limits_{r = 0}^{n} {\int\limits_{{x_{r} }}^{{x_{r + 1} }} {\bar{Y}_{{\left( {r + 1} \right)s}} \cdot F_{{\left( {r + 1} \right)1}} \cdot {\text{d}}x} } \\ K_{1} & = - \sum\limits_{r = 0}^{n} {\int\limits_{{x_{r} }}^{{x_{r + 1} }} {\bar{Y}_{{\left( {r + 1} \right)k}} *} \left\langle {2 \cdot u_{0} \cdot Y_{{\left( {r + 1} \right)k}}^{\prime } + 2 \cdot i \cdot \omega_{k} \cdot Y_{{\left( {r + 1} \right)k}} } \right\rangle \cdot {\text{d}}x} - \left. {\sum\limits_{r = 1}^{n} {\alpha \cdot \left\langle {2 \cdot i \cdot \omega_{k} \cdot Y_{rk} \cdot \bar{Y}_{rk} + 2 \cdot u_{0} \cdot Y_{rk}^{\prime } \cdot \bar{Y}_{rk} - u_{0} \cdot Y_{rk} \cdot \bar{Y}_{rk}^{\prime } } \right\rangle } } \right|_{{x = x_{r} }} \\ K_{2} & = \sum\limits_{r = 0}^{n} {\int\limits_{{x_{r} }}^{{x_{r + 1} }} {\bar{Y}_{{\left( {r + 1} \right)k}} *} \left\langle {u_{1} \cdot \left( {i \cdot \left( {\omega_{k} + \omega_{s} } \right) - \frac{{\omega_{s} }}{2}} \right) \cdot \phi_{{\left( {r + 1} \right)1}}^{\prime } + u_{1} \cdot \left( {i \cdot \left( { - \omega_{k} + \omega_{s} } \right) - \frac{{\omega_{s} }}{2}} \right) \cdot \phi_{{\left( {r + 1} \right)2}}^{\prime } + u_{0} \cdot u_{1} \cdot \left( {\phi_{{\left( {r + 1} \right)1}}^{{\prime \prime }} - \phi_{{\left( {r + 1} \right)2}}^{{\prime \prime }} } \right)} \right.} \left. { + \frac{{u_{1}^{2} }}{2} \cdot Y_{{\left( {r + 1} \right)k}}^{{\prime \prime }} } \right\rangle \cdot {\text{d}}x \\ & \quad - \sum\limits_{r = 1}^{n} {\alpha \cdot \left\langle {u_{1} \cdot \left( {\left( { - i \cdot \left( {\omega_{k} + \omega_{s} } \right) + \frac{{\omega_{s} }}{2}} \right) \cdot \phi_{r1}^{\prime } + \left( {i \cdot \left( {\omega_{k} - \omega_{s} } \right) + \frac{{\omega_{s} }}{2}} \right) \cdot \phi_{r2}^{\prime } } \right) \cdot \bar{Y}_{rk} } \right.} \\ & \left. {\left. {\quad +\, \left( {\frac{{u_{1}^{2} }}{2} \cdot Y^{\prime}_{rk} + \frac{{u_{1} }}{2} \cdot i \cdot \left( {\omega_{k} + \omega_{s} } \right) \cdot \phi_{r1} - \frac{{u_{1} }}{2} \cdot i \cdot \left( {\omega_{k} - \omega_{s} } \right) \cdot \phi_{r2} + u_{0} \cdot u_{1} \cdot \left( {\phi_{r1}^{\prime } - \phi_{r2}^{\prime } } \right)} \right) \cdot \bar{Y}_{rk}^{\prime } } \right\rangle } \right|_{{x = x_{r} }} \\ K_{3} & = \frac{1}{2} \cdot v_{k1}^{2} \cdot \sum\limits_{r = 0}^{n} {\int\limits_{{x_{r} }}^{{x_{r + 1} }} {\bar{Y}_{(r + 1)k} *} \left\langle {Y_{{\left( {r + 1} \right)k}}^{{\prime \prime }} \cdot \sum\limits_{r = 0}^{n} {\int\limits_{{x_{r} }}^{{x_{r + 1} }} {2 \cdot Y_{{\left( {r + 1} \right)k}}^{\prime } \cdot \bar{Y}_{{\left( {r + 1} \right)k}}^{\prime } \cdot {\text{d}}x} } + \bar{Y}_{{\left( {r + 1} \right)k}}^{{\prime \prime }} \cdot \sum\limits_{r = 0}^{n} {\int\limits_{{x_{r} }}^{{x_{r + 1} }} {Y_{{\left( {r + 1} \right)k}}^{\prime 2} \cdot {\text{d}}x} } } \right\rangle \cdot {\text{d}}x} \\ K_{4} & = \frac{1}{2} \cdot v_{k1}^{2} \cdot \sum\limits_{r = 0}^{n} {\int\limits_{{x_{r} }}^{{x_{r + 1} }} {\bar{Y}_{{\left( {r + 1} \right)k}} *} \left\langle {Y_{{\left( {r + 1} \right)k}}^{{\prime \prime }} \cdot \sum\limits_{r = 0}^{s} {\int\limits_{{x_{r} }}^{{x_{r + 1} }} {2 \cdot Y_{{\left( {r + 1} \right)s}}^{\prime } \cdot \bar{Y}_{{\left( {r + 1} \right)s}}^{\prime } \cdot {\text{d}}x} } + Y_{{\left( {r + 1} \right)s}}^{{\prime \prime }} \cdot \sum\limits_{r = 0}^{n} {\int\limits_{{x_{r} }}^{{x_{r + 1} }} {2 \cdot Y_{{\left( {r + 1} \right)k}}^{\prime } \cdot \bar{Y}_{{\left( {r + 1} \right)s}}^{\prime } \cdot {\text{d}}x} } } \right.} \left. { + \bar{Y}_{{\left( {r + 1} \right)s}}^{{\prime \prime }} \cdot \sum\limits_{r = 0}^{n} {\int\limits_{{x_{r} }}^{{x_{r + 1} }} {2 \cdot Y_{{\left( {r + 1} \right)k}}^{\prime } \cdot Y_{{\left( {r + 1} \right)s}}^{\prime } \cdot {\text{d}}x} } } \right\rangle \cdot {\text{d}}x \\ K_{5} & = - \sum\limits_{r = 0}^{n} {\int\limits_{{x_{r} }}^{{x_{r + 1} }} {\bar{Y}_{{\left( {r + 1} \right)k}} } *\left\langle {u_{1} \cdot \omega_{s} \cdot \left( {\frac{1}{2} + 2 \cdot i} \right) \cdot \phi_{(r + 1)3}^{\prime } + u_{0} \cdot u_{1} \cdot \phi_{(r + 1)3}^{{\prime \prime }} + \frac{{u_{1}^{2} }}{4} \cdot Y_{{\left( {r + 1} \right)s}}^{{\prime \prime }} } \right\rangle \cdot {\text{d}}x} + \sum\limits_{r = 1}^{n} {\alpha \cdot \left\langle { - u_{1} \cdot \omega_{s} \cdot \left( {\frac{1}{2} + 2 \cdot i} \right) \cdot \phi_{r3}^{\prime } \cdot \bar{Y}_{rk} } \right.} \\ & \left. {\left. {\quad +\, \left( {\frac{{u_{1}^{2} }}{4} \cdot Y_{rs}^{\prime } + u_{0} \cdot u_{1} \cdot \phi_{r3}^{\prime } + u_{1} \cdot i \cdot \omega_{s} \cdot \phi_{r3} } \right) \cdot \bar{Y}_{rk}^{\prime } } \right\rangle } \right|_{{x = x_{r} }} \\ K_{6} & = \frac{1}{2} \cdot v_{k1}^{2} \cdot \sum\limits_{r = 0}^{n} {\int\limits_{{x_{r} }}^{{x_{r + 1} }} {\bar{Y}_{{\left( {r + 1} \right)k}} *\left\langle {Y_{{\left( {r + 1} \right)s}}^{{\prime \prime }} \cdot \sum\limits_{r = 0}^{n} {\int\limits_{{x_{r} }}^{{x_{r + 1} }} {Y_{{\left( {r + 1} \right)s}}^{\prime 2} \cdot {\text{d}}x} } } \right\rangle } \cdot {\text{d}}x} \\ \end{aligned}$$
$$\begin{aligned} S_{1} & = - \sum\limits_{r = 0}^{n} {\int\limits_{{x_{r} }}^{{x_{r + 1} }} {\bar{Y}_{{\left( {r + 1} \right)s}} } *\left\langle {2 \cdot u_{0} \cdot Y_{{\left( {r + 1} \right)s}}^{\prime } + 2 \cdot i \cdot \omega_{s} \cdot Y_{{\left( {r + 1} \right)s}} } \right\rangle \cdot {\text{d}}x} - \sum\limits_{r = 1}^{n} {\alpha \cdot \left. {\left\langle {2 \cdot i \cdot \omega_{s} \cdot Y_{rs} \cdot \bar{Y}_{rs} + 2 \cdot u_{0} \cdot Y_{rs}^{\prime } \cdot \bar{Y}_{rs} - u_{0} \cdot Y_{rs} \cdot \bar{Y}_{rs}^{\prime } } \right\rangle } \right|_{{x = x_{r} }} } \\ S_{2} & = \sum\limits_{r = 0}^{n} {\int\limits_{{x_{r} }}^{{x_{r + 1} }} {\bar{Y}_{{\left( {r + 1} \right)s}} *} \left\langle { - u_{1} \cdot \omega_{s} \cdot \left( {\frac{1}{2} - 2 \cdot i} \right) \cdot \phi_{(r + 1)3}^{\prime } - u_{1} \cdot \frac{{\omega_{s} }}{2} \cdot \phi_{(r + 1)4}^{\prime } u_{0} \cdot u_{1} \cdot \left( {\phi_{(r + 1)3}^{{\prime \prime }} - \phi_{(r + 1)4}^{{\prime \prime }} } \right) + \frac{{u_{1}^{2} }}{2} \cdot Y_{{\left( {r + 1} \right)s}}^{{\prime \prime }} } \right\rangle {\text{d}}x} \\ & \quad - \sum\limits_{r = 1}^{n} {\alpha \cdot \left. {\left\langle {\left( {u_{1} \cdot \omega_{s} \cdot \left( {\frac{1}{2} - 2 \cdot i} \right) \cdot \phi_{r3}^{\prime } + u_{1} \cdot \frac{{\omega_{s} }}{2} \cdot \phi_{r4}^{\prime } } \right) \cdot \bar{Y}_{rs} + \left( {\frac{{u_{1}^{2} }}{2} \cdot Y_{rs}^{\prime } + u_{1} \cdot i \cdot \omega_{s} \cdot \phi_{r3} + u_{0} \cdot u_{1} \cdot \left( {\phi_{r3}^{\prime } - \phi_{r4}^{\prime } } \right)} \right) \cdot \bar{Y}_{rs}^{\prime } } \right\rangle } \right|_{{x = x_{r} }} } \\ S_{3} & = \frac{1}{2} \cdot v_{k1}^{2} \cdot \sum\limits_{r = 0}^{n} {\int\limits_{{x_{r} }}^{{x_{r + 1} }} {\bar{Y}_{{\left( {r + 1} \right)s}} } *\left\langle {Y_{{\left( {r + 1} \right)s}}^{{\prime \prime }} \cdot \sum\limits_{r = 0}^{n} {\int\limits_{{x_{r} }}^{{x_{r + 1} }} {2 \cdot Y_{{\left( {r + 1} \right)s}}^{\prime } \cdot \bar{Y}_{{\left( {r + 1} \right)s}}^{\prime } \cdot {\text{d}}x} } + \bar{Y}_{{\left( {r + 1} \right)s}}^{{\prime \prime }} \cdot \sum\limits_{r = 0}^{n} {\int\limits_{{x_{r} }}^{{x_{r + 1} }} {\bar{Y}_{{\left( {r + 1} \right)s}}^{\prime 2} \cdot {\text{d}}x} } } \right\rangle \cdot {\text{d}}x} \\ S_{4} & = \frac{1}{2} \cdot v_{k1}^{2} \cdot \sum\limits_{r = 0}^{n} {\int\limits_{{x_{r} }}^{{x_{r + 1} }} {\bar{Y}_{{\left( {r + 1} \right)s}} } *} \left\langle {Y_{{\left( {r + 1} \right)k}}^{{\prime \prime }} \cdot \sum\limits_{r = 0}^{n} {\int\limits_{{x_{r} }}^{{x_{r + 1} }} {2 \cdot \bar{Y}_{{\left( {r + 1} \right)k}}^{\prime } \cdot Y_{{\left( {r + 1} \right)s}}^{\prime } \cdot {\text{d}}x} } + \bar{Y}_{{\left( {r + 1} \right)k}}^{{\prime \prime }} \cdot \sum\limits_{r = 0}^{n} {\int\limits_{{x_{r} }}^{{x_{r + 1} }} {2 \cdot Y_{{\left( {r + 1} \right)k}}^{\prime } \cdot Y_{{\left( {r + 1} \right)s}}^{\prime } \cdot {\text{d}}x} } } \right.\left. { + Y_{{\left( {r + 1} \right)s}}^{{\prime \prime }} \cdot \sum\limits_{r = 0}^{n} {\int\limits_{{x_{r} }}^{{x_{r + 1} }} {2 \cdot Y_{{\left( {r + 1} \right)k}}^{\prime } \cdot \bar{Y}_{{\left( {r + 1} \right)k}}^{\prime } \cdot {\text{d}}x} } } \right\rangle \cdot {\text{d}}x \\ S_{5} & = \sum\limits_{r = 0}^{n} {\int\limits_{{x_{r} }}^{{x_{r + 1} }} {\bar{Y}_{{\left( {r + 1} \right)s}} } *\left\langle {u_{1} \cdot \left( {i \cdot \left( {\omega_{k} - \omega_{s} } \right) - \frac{{\omega_{s} }}{2}} \right) \cdot \phi_{(r + 1)2}^{\prime } u_{0} \cdot u_{1} \cdot \phi_{(r + 1)2}^{{\prime \prime }} - \frac{{u_{1}^{2} }}{4} \cdot Y_{{\left( {r + 1} \right)k}}^{{\prime \prime }} } \right\rangle \cdot {\text{d}}x} \\ & \quad + \sum\limits_{r = 1}^{n} {\alpha \cdot \left\langle {u_{1} \cdot \left( {i \cdot \left( {\omega_{k} - \omega_{s} } \right) - \frac{{\omega_{s} }}{2}} \right) \cdot \phi_{r2}^{\prime } \cdot \bar{Y}_{rs} } \right.} \left. {\left. { + \left( {\frac{{u_{1}^{2} }}{4} \cdot Y_{rk}^{\prime } - \frac{{u_{1} }}{2} \cdot i \cdot \left( {\omega_{k} - \omega_{s} } \right) \cdot \phi_{r2} - u_{0} \cdot u_{1} \cdot \phi_{r2}^{\prime } } \right) \cdot \bar{Y}_{rs}^{\prime } } \right\rangle } \right|_{{x = x_{r} }} \\ S_{6} & = \frac{1}{2} \cdot v_{k1}^{2} \cdot \sum\limits_{r = 0}^{n} {\int\limits_{{x_{r} }}^{{x_{r + 1} }} {\bar{Y}_{{\left( {r + 1} \right)s}} } *\left\langle {Y_{{\left( {r + 1} \right)k}}^{{\prime \prime }} \cdot \sum\limits_{r = 0}^{n} {\int\limits_{{x_{r} }}^{{x_{r + 1} }} {\bar{Y}_{{\left( {r + 1} \right)s}}^{\prime 2} \cdot {\text{d}}x} } + \bar{Y}_{{\left( {r + 1} \right)s}}^{{\prime \prime }} \cdot \sum\limits_{r = 0}^{n} {\int\limits_{{x_{r} }}^{{x_{r + 1} }} {2 \cdot Y_{{\left( {r + 1} \right)k}}^{\prime } \cdot \bar{Y}_{(r + 1)s}^{\prime } \cdot {\text{d}}x} } } \right\rangle \cdot {\text{d}}x} \\ S_{7} & = - \sum\limits_{r = 0}^{n} {\int\limits_{{x_{r} }}^{{x_{r + 1} }} {\bar{Y}_{{\left( {r + 1} \right)s}} } *\left\langle {u_{1} \cdot \frac{{\omega_{s} }}{2} \cdot \bar{\phi }_{(r + 1)4}^{\prime } + u_{0} \cdot u_{1} \cdot \bar{\phi }_{(r + 1)4}^{{\prime \prime }} + \frac{{u_{1}^{2} }}{4} \cdot \bar{Y}_{{\left( {r + 1} \right)s}}^{{\prime \prime }} } \right\rangle \cdot {\text{d}}x} + \sum\limits_{r = 1}^{n} {\alpha \cdot \left. {\left\langle { - u_{1} \cdot \frac{{\omega_{s} }}{2} \cdot \bar{\phi }_{r4}^{\prime } \cdot \bar{Y}_{rs} + \left( {\frac{{u_{1}^{2} }}{4} \cdot \bar{Y}^{\prime}_{rs} + u_{0} \cdot u_{1} \cdot \bar{\phi }_{r4}^{\prime } } \right) \cdot \bar{Y}_{rs}^{\prime } } \right\rangle } \right|}_{{x = x_{r} }} . \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarıgül, M. Internal Resonance of Axially Moving Beams with Masses. Iran J Sci Technol Trans Mech Eng 43, 1–16 (2019). https://doi.org/10.1007/s40997-017-0109-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-017-0109-x

Keywords

Navigation