Skip to main content

Advertisement

Log in

A Comprehensive Review on the Effect of Fibers on Fresh and Engineering Properties of Geopolymer Concrete

  • Review Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Civil Engineering Aims and scope Submit manuscript

Abstract

Recently, the emergence of geopolymer concrete (GPC) as a sustainable and eco-friendly construction material has gained consideration as a substitute for conventional concrete. However, GPC shows brittle behavior just like ordinary concrete. To overcome the brittle behavior of the GPC, so far various researchers focused their research work on the development of fiber-reinforced geopolymer concrete (FRGPC) in order to enhance the weak parameters of GPC. The principal focus of this review paper is to summarize the outcome of different fibers, used for the production of FRGPC, in terms of workability, compressive strength, flexural strength, energy absorption, and toughness index. A wide range of data from past research publications has been collected regarding the effect of different fibers on the workability, compressive strength, flexural strength, energy absorption, and toughness of FRGPC, in order to conclude a typical range of fiber percentage incorporation in the GPC matrix. It was concluded that fiber incorporation up to 3% greatly improves the compressive and flexural strength, energy absorption, toughness index and has negative influence on the workability of FRGPC. Based on this review study and analysis, future researchers are encouraged to carry out research studies on fibers compatibility with different precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All supporting data for this review are included in the article.

References

  • Abdullah M, Faris M, Tahir M, Kadir A, Sandu A, Isa NM, Corbu O (2017) Performance and characterization of geopolymer concrete reinforced with short steel fiber. In: Paper presented at the IOP conference series: materials science and engineering

  • Ahmari S, Zhang LJC, Materials B (2012) Production of eco-friendly bricks from copper mine tailings through geopolymerization. 29:323–331

  • Akturk B, Akca AH, Kizilkanat AB (2020) Fracture response of fiber-reinforced sodium carbonate activated slag mortars. Construct Build Mater 241:118128. https://doi.org/10.1016/j.conbuildmat.2020.118128

    Article  CAS  Google Scholar 

  • Amran M, Debbarma S, Ozbakkaloglu TJC, Materials B (2021) Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties. 270:121857. https://doi.org/10.1016/j.conbuildmat.2020.121857

  • Amran YM, Alyousef R, Alabduljabbar H, El-Zeadani MJJOCP (2020) Clean production and properties of geopolymer concrete. A Review 251:119679

    CAS  Google Scholar 

  • Andini S, Cioffi R, Colangelo F, Grieco T, Montagnaro F, Santoro L (2008) Coal fly ash as raw material for the manufacture of geopolymer-based products. Waste Manage 28(2):416–423. https://doi.org/10.1016/j.wasman.2007.02.001

    Article  CAS  Google Scholar 

  • Asghar R, Khan MA, Alyousef R, Javed MF, Ali MJC, Materials B (2023) Promoting the green Construction: Scientometric review on the mechanical and structural performance of geopolymer concrete. 368:130502

  • Aydın S, Baradan BJCPBE (2013) The effect of fiber properties on high performance alkali-activated slag/silica fume mortars. 45(1):63–69

  • Aydın S, Baradan BJM, Design (2012) Mechanical and microstructural properties of heat cured alkali-activated slag mortars. 35:374–383

  • Aygörmez Y, Canpolat O, Al-Mashhadani MMJC, Materials B (2020) A survey on one year strength performance of reinforced geopolymer composites. 264:120267

  • Bajpai R, Choudhary K, Srivastava A, Sangwan KS, Singh MJJOCP (2020) Environmental impact assessment of fly ash and silica fume based geopolymer concrete. 254:120147.

  • Barluenga G (2010) Fiber-matrix interaction at early ages of concrete with short fibers. Cem Concr Res 40(5):802–809. https://doi.org/10.1016/j.cemconres.2009.11.014

    Article  CAS  Google Scholar 

  • Bashar II, Alengaram UJ, Jumaat MZ, Islam A, Santhi H, Sharmin A (2016a) Engineering properties and fracture behaviour of high volume palm oil fuel ash based fibre reinforced geopolymer concrete. Constr Build Mater 111:286–297. https://doi.org/10.1016/j.conbuildmat.2016.02.022

    Article  CAS  Google Scholar 

  • Bashar II, Alengaram UJ, Jumaat MZ, Islam A, Santhi H, Sharmin AJC, Materials B (2016b) Engineering properties and fracture behaviour of high volume palm oil fuel ash based fibre reinforced geopolymer concrete. 111:286–297

  • Bazant ZP, Ozbolt J (1992) Compression failure of quasibrittle material: nonlocal microplane model. J Eng Mech ASCE 118(3):540–556. https://doi.org/10.1061/(Asce)0733-9399(1992)118:3(540)

    Article  Google Scholar 

  • Bellum RR, Muniraj K, Madduru SRCJSAS (2020) Exploration of mechanical and durability characteristics of fly ash-GGBFS based green geopolymer concrete. 2(5):1–10

  • Bhutta A, Borges PH, Zanotti C, Farooq M, Banthia NJC, Composites C (2017a) Flexural behavior of geopolymer composites reinforced with steel and polypropylene macro fibers. 80:31–40

  • Bhutta A, Borges PHR, Zanotti C, Farooq M, Banthia N (2017b) Flexural behavior of geopolymer composites reinforced with steel and polypropylene macro fibers. Cement Concr Compos 80:31–40. https://doi.org/10.1016/j.cemconcomp.2016.11.014

    Article  CAS  Google Scholar 

  • Bhutta A, Farooq M, Banthia N (2019a) Performance characteristics of micro fiber-reinforced geopolymer mortars for repair. Constr Build Mater 215:605–612. https://doi.org/10.1016/j.conbuildmat.2019.04.210

    Article  CAS  Google Scholar 

  • Bhutta A, Farooq M, Banthia NJC, Materials B (2019b) Performance characteristics of micro fiber-reinforced geopolymer mortars for repair. 215:605–612

  • Bolander JE, Choi S, Duddukuri SR (2008) Fracture of fiber-reinforced cement composites: effects of fiber dispersion. Int J Fract 154(1–2):73–86. https://doi.org/10.1007/s10704-008-9269-4

    Article  CAS  Google Scholar 

  • Boulekbache B, Hamrat M, Chemrouk M, Amziane S (2010a) Flowability of fibre-reinforced concrete and its effect on the mechanical properties of the material. Constr Build Mater 24(9):1664–1671. https://doi.org/10.1016/j.conbuildmat.2010.02.025

    Article  Google Scholar 

  • Boulekbache B, Hamrat M, Chemrouk M, Amziane SJC, Materials B (2010b) Flowability of fibre-reinforced concrete and its effect on the mechanical properties of the material. 24(9):1664–1671

  • Buchwald A, Hohmann M, Posern K, Brendler EJACS (2009) The suitability of thermally activated illite/smectite clay as raw material for geopolymer binders. 46(3):300–304

  • Celik A, Yilmaz K, Canpolat O, Al-Mashhadani MM, Aygormez Y, Uysal M (2018a) High-temperature behavior and mechanical characteristics of boron waste additive metakaolin based geopolymer composites reinforced with synthetic fibers. Constr Build Mater 187:1190–1203. https://doi.org/10.1016/j.conbuildmat.2018.08.062

    Article  CAS  Google Scholar 

  • Celik A, Yilmaz K, Canpolat O, Al-Mashhadani MM, Aygörmez Y, Uysal MJC, Materials B (2018b) High-temperature behavior and mechanical characteristics of boron waste additive metakaolin based geopolymer composites reinforced with synthetic fibers. 187:1190–1203

  • Çelik AİJIJOS, Technology TOCE (2023) Mechanical performance of geopolymer concrete based on basalt and marble powder. 1–15. https://doi.org/10.1007/s40996-023-01063-4

  • Chen Y, Zhang Y, Chen T, Zhao Y, Bao SJC, Materials B (2011) Preparation of eco-friendly construction bricks from hematite tailings. 25(4):2107–2111

  • Chi Y, Yu M, Huang L, Xu LH (2017) Finite element modeling of steel-polypropylene hybrid fiber reinforced concrete using modified concrete damaged plasticity. Eng Struct 148:23–35. https://doi.org/10.1016/j.engstruct.2017.06.039

    Article  Google Scholar 

  • Chindaprasirt P, Chareerat T, Sirivivatnanon V (2007) Workability and strength of coarse high calcium fly ash geopolymer. Cement Concr Compos 29(3):224–229. https://doi.org/10.1016/j.cemconcomp.2006.11.002

    Article  CAS  Google Scholar 

  • Choi SJ, Choi JI, Song JK, Lee BY (2015) Rheological and mechanical properties of fiber-reinforced alkali-activated composite. Constr Build Mater 96:112–118. https://doi.org/10.1016/j.conbuildmat.2015.07.182

    Article  Google Scholar 

  • Chu S, Ye H, Huang L, Li LJC, Materials B (2021a) Carbon fiber reinforced geopolymer (FRG) mix design based on liquid film thickness. 269:121278

  • Chu SH, Ye H, Huang L, Li LG (2021b) Carbon fiber reinforced geopolymer (FRG) mix design based on liquid film thickness. Construct Build Mater 269:121278. https://doi.org/10.1016/j.conbuildmat.2020.121278

  • Cui Y, Hao H, Li J, Chen WJJOMICE (2020) Effect of adding methylcellulose on mechanical and vibration properties of geopolymer paste and hybrid fiber-reinforced geopolymer composite 32(7):04020166

  • Davidovits JJIG, Saint-Quentin F (2008) Chemistry and applications geopolymer institute

  • De Silva P, Sagoe-Crenstil K, Sirivivatnanon VJC, Research C (2007) Kinetics of geopolymerization: role of Al2O3 and SiO2. 37(4):512–518

  • Dias DP, Thaumaturgo C (2005) Fracture toughness of geopolymeric concretes reinforced with basalt fibers. Cement Concr Compos 27(1):49–54. https://doi.org/10.1016/j.cemconcomp.2004.02.044

    Article  CAS  Google Scholar 

  • Dimas D, Giannopoulou I, Panias D (2009) Polymerization in sodium silicate solutions: a fundamental process in geopolymerization technology. J Mater Sci 44(14):3719–3730. https://doi.org/10.1007/s10853-009-3497-5

    Article  CAS  ADS  Google Scholar 

  • Ding Y, Bai Y-LJM (2018a) Fracture properties and softening curves of steel fiber-reinforced slag-based geopolymer mortar and concrete. 11(8):1445

  • Ding Y, Bai YL (2018b) Fracture properties and softening curves of steel fiber-reinforced slag-based geopolymer mortar and concrete. Materials (Basel) 11(8):1445. https://doi.org/10.3390/ma11081445

    Article  CAS  PubMed  ADS  Google Scholar 

  • Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, van Deventer JSJJOMS (2007) Geopolymer technology: the current state of the art. 42(9):2917–2933

  • Enfedaque A, Cendon D, Galvez F, Sanchez-Galvez V (2010) Analysis of glass fiber reinforced cement (GRC) fracture surfaces. Constr Build Mater 24(7):1302–1308. https://doi.org/10.1016/j.conbuildmat.2009.12.005

    Article  Google Scholar 

  • Environment U, Scrivener KL, John VM, Gartner EMJC, Research C (2018) Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. 114:2–26

  • Faris MA, Abdullah M, Muniandy R, Abu Hashim MF, Bloch K, Jez B et al (2021a) Comparison of hook and straight steel fibers addition on Malaysian fly ash-based geopolymer concrete on the slump, density, water absorption and mechanical properties. Materials (Basel) 14(5):1310. https://doi.org/10.3390/ma14051310

  • Faris MA, Abdullah MMAB, Ismail KN, Muniandy R, Ariffin N (2017) Performance of steel wool fiber reinforced geopolymer concrete. In: Paper presented at the AIP conference proceedings

  • Faris MA, Abdullah MMAB, Muniandy R, Abu Hashim MF, Błoch K, Jeż B et al (2021b) Comparison of hook and straight steel fibers addition on malaysian fly ash-based geopolymer concrete on the slump, density, water absorption and mechanical properties 14(5):1310

  • Farooq F, Jin X, Javed MF, Akbar A, Shah MI, Aslam F et al (2021) Geopolymer concrete as sustainable material: a state of the art review. 306:124762. https://doi.org/10.1016/j.conbuildmat.2021.124762

  • Farooq M, Bhutta A, Banthia N (2019a) Tensile performance of eco-friendly ductile geopolymer composites (EDGC) incorporating different micro-fibers. Cement Concr Compos 103:183–192. https://doi.org/10.1016/j.cemconcomp.2019.05.004

    Article  CAS  Google Scholar 

  • Farooq M, Bhutta A, Banthia NJC, Composites C (2019b) Tensile performance of eco-friendly ductile geopolymer composites (EDGC) incorporating different micro-fibers. 103:183–192

  • Ferrara L, Park YD, Shah SP (2007) A method for mix-design of fiber-reinforced self-compacting concrete. Cem Concr Res 37(6):957–971. https://doi.org/10.1016/j.cemconres.2007.03.014

    Article  CAS  Google Scholar 

  • Ganesh C, Muthukannan MJJOM, JMES ES (2019) Investigation on the glass fiber reinforced geopolymer concrete made of M-sand 6(4):501–512

  • Gao X, Yu Q, Yu R, Brouwers HJM, Structures (2017a). Evaluation of hybrid steel fiber reinforcement in high performance geopolymer composites. 50(2):1–14

  • Gao X, Yu QL, Yu R, Brouwers HJH (2017b) Evaluation of hybrid steel fiber reinforcement in high performance geopolymer composites. Mater Struct 50(2):1–14. https://doi.org/10.1617/s11527-017-1030-x

    Article  CAS  Google Scholar 

  • Ghasemzadeh Mousavinejad SH, Shemshad Sara YGJIJOS, Technology TOCE (2019) Experimental study effect of silica fume and hybrid fiber on mechanical properties lightweight concrete. 43:263–271. https://doi.org/10.1007/s40996-018-0137-9

  • Giasuddin HM, Sanjayan JG, Ranjith PJF (2013) Strength of geopolymer cured in saline water in ambient conditions 107:34–39

  • Gjorv OEJSP (1989) Alkali activation of a norwegian granulated blast-furnace slag. 114:1501–1518

  • Grünewald S (2004) Performance-based design of self-compacting fibre reinforced concrete

  • Gülşan ME, Alzeebaree R, Rasheed AA, Niş A, Kurtoğlu AEJC, Materials B (2019) Development of fly ash/slag based self-compacting geopolymer concrete using nano-silica and steel fiber 211:271–283

  • Guo L, Wu Y, Xu F, Song X, Ye J, Duan P, Zhang ZJCPBE (2020a) Sulfate resistance of hybrid fiber reinforced metakaolin geopolymer composites 183:107689

  • Guo L, Wu YY, Xu F, Song XT, Ye JY, Duan P, Zhang ZH (2020b) Sulfate resistance of hybrid fiber reinforced metakaolin geopolymer composites. Compos Part B Eng 183:107689. https://doi.org/10.1016/j.compositesb.2019.107689

  • Guo X, Pan XJC, Materials B (2018) Mechanical properties and mechanisms of fiber reinforced fly ash–steel slag based geopolymer mortar. 179:633–641. https://doi.org/10.1016/j.conbuildmat.2018.05.198

  • Guo X, Yang JJC, Materials B (2020c) Intrinsic properties and micro-crack characteristics of ultra-high toughness fly ash/steel slag based geopolymer. 230:116965

  • Guo XL, Pan XJ (2018) Mechanical properties and mechanisms of fiber reinforced fly ash-steel slag based geopolymer mortar. Constr Build Mater 179:633–641. https://doi.org/10.1016/j.conbuildmat.2018.05.198

    Article  CAS  ADS  Google Scholar 

  • Guo XL, Yang JY (2020) Intrinsic properties and micro-crack characteristics of ultra-high toughness fly ash/steel slag based geopolymer. Construct Build Mater 230:116965. https://doi.org/10.1016/j.conbuildmat.2019.116965

  • Gupta AJMTP (2021) Investigation of the strength of ground granulated blast furnace slag based geopolymer composite with silica fume 44:23–28

  • Haddaji Y, Majdoubi H, Mansouri S, Tamraoui Y, El Bouchti M, Manoun B et al (2021a) Effect of synthetic fibers on the properties of geopolymers based on non-heat treated phosphate mine tailing. Mater Chem Phys 260:124147. https://doi.org/10.1016/j.matchemphys.2020.124147

  • Haddaji Y, Majdoubi H, Mansouri S, Tamraoui Y, Manoun B, Oumam M et al (2021b) Effect of synthetic fibers on the properties of geopolymers based on non-heat treated phosphate mine tailing 260:124147

  • Hajjaji W, Andrejkovičová S, Zanelli C, Alshaaer M, Dondi M, Labrincha J et al (2013) Composition and technological properties of geopolymers based on metakaolin and red mud 52:648–654

  • Hassan A, Arif M, Shariq MJJOCP (2019) Use of geopolymer concrete for a cleaner and sustainable environment—a review of mechanical properties and microstructure. 223:704–728. https://doi.org/10.1016/j.jclepro.2019.03.051

  • He J, Jie Y, Zhang J, Yu Y, Zhang GJC, Composites C (2013) Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. 37:108–118

  • Jan A, Pu Z, Khan KA, Ahmad I, Khan IJS (2022a). Effect of Glass Fibers on the Mechanical Behavior as Well as Energy Absorption Capacity and Toughness Indices of Concrete Bridge Decks. 14(5), 2283-2297. doi:https://doi.org/10.1007/s12633-021-01026-2

  • Jan A, Pu Z, Khan KA, Ahmad I, Shaukat AJ, Hao Z, Khan IJS (2022b) A review on the effect of silica to alumina ratio, alkaline solution to binder ratio, calcium oxide+ ferric oxide, molar concentration of sodium hydroxide and sodium silicate to sodium hydroxide ratio on the compressive strength of geopolymer concrete. 14(7):3147–3162. https://doi.org/10.1007/s12633-021-01130-3

  • Jewell S, Kimball SMJUGS (2015) Mineral commodity summaries 2015. 9:196

  • Kaya MJIJOS, Technology TOCE (2022) Effect of steel fiber additive on high temperature resistance in geopolymer mortars. 46(3):1949–1967. https://doi.org/10.1007/s40996-021-00798-2

  • Khan MZN, Hao Y, Hao H, Shaikh FUAJC, Composites C (2018a) Mechanical properties of ambient cured high strength hybrid steel and synthetic fibers reinforced geopolymer composites. 85:133–152

  • Khan MZN, Hao Y, Hao H, Shaikh FUAJC, Materials B (2018b) Experimental evaluation of quasi-static and dynamic compressive properties of ambient-cured high-strength plain and fiber reinforced geopolymer composites. 166:482–499

  • Khan MZN, Hao YF, Hao H, Shaikh FUA (2018c) Experimental evaluation of quasi-static and dynamic compressive properties of ambient-cured high-strength plain and fiber reinforced geopolymer composites. Constr Build Mater 166:482–499. https://doi.org/10.1016/j.conbuildmat.2018.01.166

    Article  CAS  Google Scholar 

  • Khan MZN, Hao YF, Hao H, Shaikh FUA (2018d) Mechanical properties of ambient cured high strength hybrid steel and synthetic fibers reinforced geopolymer composites. Cement Concr Compos 85:133–152. https://doi.org/10.1016/j.cemconcomp.2017.10.011

    Article  CAS  Google Scholar 

  • Khan MZN, Hao YF, Hao H, Shaikh FUA, Liu KW (2018e) Mechanical properties of ambient cured high-strength plain and hybrid fiber reinforced geopolymer composites from triaxial compressive tests. Constr Build Mater 185:338–353. https://doi.org/10.1016/j.conbuildmat.2018.07.092

    Article  CAS  Google Scholar 

  • Koohestani B, Darban AK, Mokhtari P, Yilmaz E, Darezereshki E (2019) Comparison of different natural fiber treatments: a literature review. Int J Environ Sci Technol 16(1):629–642. https://doi.org/10.1007/s13762-018-1890-9

    Article  CAS  Google Scholar 

  • Korniejenko K, Fraczek E, Pytlak E, Adamski M (2016a) Mechanical properties of geopolymer composites reinforced with natural fibers. Ecol N Build Mater Prod 2016(151):388–393. https://doi.org/10.1016/j.proeng.2016.07.395

    Article  CAS  Google Scholar 

  • Korniejenko K, Frączek E, Pytlak E, Adamski MJPE (2016b) Mechanical properties of geopolymer composites reinforced with natural fibers. 151:388–393

  • Krivenko P, Kovalchuk GYJJOMS (2007) Directed synthesis of alkaline aluminosilicate minerals in a geocement matrix. 42(9):2944–2952

  • Kuder KG, Ozyurt N, Mu EB, Shah SP (2007) Rheology of fiber-reinforced cementitious materials. Cem Concr Res 37(2):191–199. https://doi.org/10.1016/j.cemconres.2006.10.015

    Article  CAS  Google Scholar 

  • Laskar SM, Talukdar S (2017) Preparation and tests for workability, compressive and bond strength of ultra-fine slag based geopolymer as concrete repairing agent. Constr Build Mater 154:176–190. https://doi.org/10.1016/j.conbuildmat.2017.07.187

    Article  CAS  Google Scholar 

  • Laskar SM, Talukdar SJC, Materials B (2017) Preparation and tests for workability, compressive and bond strength of ultra-fine slag based geopolymer as concrete repairing agent. 154:176–190

  • Li B, Chi Y, Xu LH, Shi YC, Li CN (2018) Experimental investigation on the flexural behavior of steel-polypropylene hybrid fiber reinforced concrete. Constr Build Mater 191:80–94. https://doi.org/10.1016/j.conbuildmat.2018.09.202

    Article  CAS  Google Scholar 

  • Liu Y, Shi C, Zhang Z, Li N, Shi DJC, Composites C (2020a) Mechanical and fracture properties of ultra-high performance geopolymer concrete: effects of steel fiber and silica fume. 112:103665

  • Liu Y, Zhang Z, Shi C, Zhu D, Li N, Deng YJC, Composites C (2020b) Development of ultra-high performance geopolymer concrete (UHPGC): influence of steel fiber on mechanical properties. 112:103670

  • Liu YW, Shi CJ, Zhang ZH, Li N, Shi D (2020c) Mechanical and fracture properties of ultra-high performance geopolymer concrete: effects of steel fiber and silica fume. Cem Concr Compos 112:103665. https://doi.org/10.1016/j.cemconcomp.2020.103665

  • Liu YW, Zhang ZH, Shi CJ, Zhu DJ, Li N, Deng YL (2020d) Development of ultra-high performance geopolymer concrete (UHPGC): Influence of steel fiber on mechanical properties. Cem Concr Compos 112:103670. https://doi.org/10.1016/j.cemconcomp.2020.103670

  • Madani H, Ramezanianpour A, Shahbazinia M, Ahmadi EJC, Materials B (2020) Geopolymer bricks made from less active waste materials. 247:118441

  • Martinie L, Rossi P, Roussel N (2010) Rheology of fiber reinforced cementitious materials: classification and prediction. Cem Concr Res 40(2):226–234. https://doi.org/10.1016/j.cemconres.2009.08.032

    Article  CAS  Google Scholar 

  • Mehta PK, Monteiro PJ (2014) Concrete: microstructure, properties, and materials. McGraw-Hill Education

  • Midhun M, Rao TG, Srikrishna TCJAICC (2018a) Mechanical and fracture properties of glass fiber reinforced geopolymer concrete. 6(1):29

  • Midhun MS, Rao TDG, Srikrishna TC (2018b) Mechanical and fracture properties of glass fiber reinforced geopolymer concrete. Adv Concr Construct 6(1):29–45. https://doi.org/10.12989/acc.2018.6.1.029

    Article  Google Scholar 

  • Mohammed ZA, Al-Jaberi LA, Shubber ANJJOE, Development S (2021) Effect of polypropylene fiber on properties of geopolymer concrete based metakolin. 25(2):58–67

  • Mohseni E, Kazemi MJ, Koushkbaghi M, Zehtab B, Behforouz B (2019a) Evaluation of mechanical and durability properties of fiber-reinforced lightweight geopolymer composites based on rice husk ash and nano-alumina. Constr Build Mater 209:532–540. https://doi.org/10.1016/j.conbuildmat.2019.03.067

    Article  CAS  Google Scholar 

  • Mohseni E, Kazemi MJ, Koushkbaghi M, Zehtab B, Behforouz BJC, Materials B (2019b) Evaluation of mechanical and durability properties of fiber-reinforced lightweight geopolymer composites based on rice husk ash and nano-alumina. 209:532–540

  • Moser RD, Allison PG, Williams BA, Weiss CA, Diaz AD, Gore ER, Malone PG (2013) Improvement in the geopolymer-to-steel bond using a reactive vitreous enamel coating. Constr Build Mater 49:62–69. https://doi.org/10.1016/j.conbuildmat.2013.08.001

    Article  CAS  Google Scholar 

  • Nath P, Sarker PK (2012) Geopolymer concrete for ambient curing condition. In: Paper presented at the proceedings of the australasian structural engineering conference. Perth, Australia

  • Nazari A, Bagheri A, Riahi SJMS et al (2011) Properties of geopolymer with seeded fly ash and rice husk bark ash. 528(24):7395–7401

  • Nematollahi B, Sanjayan J, Chai JXH, Lu TM (2014a). Properties of fresh and hardened glass fiber reinforced fly ash based geopolymer concrete. In: Paper presented at the key engineering materials

  • Nematollahi B, Sanjayan J, Shaikh FUA (2014b) Comparative deflection hardening behavior of short fiber reinforced geopolymer composites. Constr Build Mater 70:54–64. https://doi.org/10.1016/j.conbuildmat.2014.07.085

    Article  Google Scholar 

  • Nematollahi B, Sanjayan J, Shaikh FUAJC, Materials B (2014c) Comparative deflection hardening behavior of short fiber reinforced geopolymer composites. 70:54–64

  • Noushini A, Hastings M, Castel A, Aslani F (2018a) Mechanical and flexural performance of synthetic fibre reinforced geopolymer concrete. Constr Build Mater 186:454–475. https://doi.org/10.1016/j.conbuildmat.2018.07.110

    Article  CAS  Google Scholar 

  • Noushini A, Hastings M, Castel A, Aslani FJC, Materials B (2018b) Mechanical and flexural performance of synthetic fibre reinforced geopolymer concrete. 186:454–475

  • Oh JE, Monteiro PJ, Jun SS, Choi S, Clark SMJC, Research C (2010) The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers. 40(2):189–196

  • Olivier JG, Schure K, Peters JJPNEAA (2017) Trends in global CO2 and total greenhouse gas emissions. 5:1–11

  • Parveen, Singhal D, Junaid MT, Jindal BB, Mehta A (2018) Mechanical and microstructural properties of fly ash based geopolymer concrete incorporating alccofine at ambient curing. Constr Build Mater 180:298–307. https://doi.org/10.1016/j.conbuildmat.2018.05.286

  • Pelisser F, Guerrino E, Menger M, Michel M, Labrincha JJC, Materials B (2013) Micromechanical characterization of metakaolin-based geopolymers. 49:547–553

  • Philleo REJSP (1989) Slag or other supplementary materials? 114:1197–1208

  • Raj SD, Ganesan N, Abraham R, Raju A (2016) Behavior of geopolymer and conventional concrete beam column joints under reverse cyclic loading. Adv Concr Constr 4(3):161–172. https://doi.org/10.12989/acc.2016.4.3.161

    Article  Google Scholar 

  • Ranjbar N, Mehrali M, Mehrali M, Alengaram UJ, Jumaat MZ (2016a) High tensile strength fly ash based geopolymer composite using copper coated micro steel fiber. Constr Build Mater 112:629–638. https://doi.org/10.1016/j.conbuildmat.2016.02.228

    Article  CAS  Google Scholar 

  • Ranjbar N, Talebian S, Mehrali M, Kuenzel C, Metselaar HSC, Jumaat MZ (2016b) Mechanisms of interfacial bond in steel and polypropylene fiber reinforced geopolymer composites. Compos Sci Technol 122:73–81. https://doi.org/10.1016/j.compscitech.2015.11.009

    Article  CAS  Google Scholar 

  • Ranjbar N, Talebian S, Mehrali M, Kuenzel C, Metselaar HSC, Jumaat MZJCS, Technology (2016c) Mechanisms of interfacial bond in steel and polypropylene fiber reinforced geopolymer composites. 122:73–81

  • Ranjbar N, Zhang MZ (2020) Fiber-reinforced geopolymer composites: a review. Cem Concr Compos 107:103498. https://doi.org/10.1016/j.cemconcomp.2019.103498

  • Rao AK, Kumar DR (2020) Effect of various alkaline binder ratio on geopolymer concrete under ambient curing condition. Mater Today Proc 27:1768–1773. https://doi.org/10.1016/j.matpr.2020.03.682

    Article  Google Scholar 

  • Razak S, Zainal FF, Shamsudin SR (2020) Effect of porosity and water absorption on compressive strength of fly ash based geopolymer and OPC Paste. In: Paper presented at the IOP conference series: materials science and engineering

  • Rehman SKU, Imtiaz L, Aslam F, Khan MK, Haseeb M, Javed MFet al (2020) Experimental investigation of NaOH and KOH mixture in SCBA-based geopolymer cement composite. 13(15):3437

  • Riahi S, Nemati A, Khodabandeh A, Baghshahi SJC, Materials B (2021a) Investigation of interfacial and mechanical properties of alumina-coated steel fiber reinforced geopolymer composites. 288:123118

  • Riahi S, Nemati A, Khodabandeh AR, Baghshahi S (2021b) Investigation of interfacial and mechanical properties of alumina-coated steel fiber reinforced geopolymer composites. Constr Build Mater 288:123118. https://doi.org/10.1016/j.conbuildmat.2021.123118

  • Risdanareni P, Schollbach K, Wang J, De Belie NJC, Materials B (2020a) The effect of NaOH concentration on the mechanical and physical properties of alkali activated fly ash-based artificial lightweight aggregate. 259:119832

  • Risdanareni P, Schollbach K, Wang JY, De Belie N (2020b) The effect of NaOH concentration on the mechanical and physical properties of alkali activated fly ash-based artificial lightweight aggregate. Constr Build Mater 259:119832. https://doi.org/10.1016/j.conbuildmat.2020.119832

  • Sadrmomtazi A, Tahmouresi B, Saradar A (2018) Effects of silica fume on mechanical strength and microstructure of basalt fiber reinforced cementitious composites (BFRCC). Constr Build Mater 162:321–333. https://doi.org/10.1016/j.conbuildmat.2017.11.159

    Article  CAS  Google Scholar 

  • Sandanayake M, Gunasekara C, Law D, Zhang G, Setunge S, Wanijuru DJSM, Technologies (2020) Sustainable criterion selection framework for green building materials—an optimisation based study of fly-ash Geopolymer concrete. 25:e00178

  • Saranya P, Nagarajan P, Shashikala AP (2021a) Performance studies on steel fiber-reinforced GGBS-dolomite geopolymer concrete. J Mater Civ Eng 33(2):04020447. https://doi.org/10.1061/(Asce)Mt.1943-5533.0003530

    Article  CAS  Google Scholar 

  • Saranya P, Nagarajan P, Shashikala APJJOMICE (2021b) Performance studies on steel fiber—reinforced GGBS-dolomite geopolymer concrete. 33(2):04020447

  • Silva G, Kim S, Bertolotti B, Nakamatsu J, Aguilar RJC, Materials B (2020) Optimization of a reinforced geopolymer composite using natural fibers and construction wastes. 258:119697

  • Sukontasukkul P, Chindaprasirt P, Pongsopha P, Phoo-Ngernkham T, Tangchirapat W, Banthia N (2020a) Effect of fly ash/silica fume ratio and curing condition on mechanical properties of fiber-reinforced geopolymer. J Sustain Cem Based Mater 9(4):218–232. https://doi.org/10.1080/21650373.2019.1709999

    Article  CAS  Google Scholar 

  • Sukontasukkul P, Chindaprasirt P, Pongsopha P, Phoo-Ngernkham T, Tangchirapat W, Banthia NJJOSC-BM (2020b) Effect of fly ash/silica fume ratio and curing condition on mechanical properties of fiber-reinforced geopolymer. 9(4):218–232

  • Sukontasukkul P, Pongsopha P, Chindaprasirt P, Songpiriyakij S (2018a) Flexural performance and toughness of hybrid steel and polypropylene fibre reinforced geopolymer. Constr Build Mater 161:37–44. https://doi.org/10.1016/j.conbuildmat.2017.11.122

    Article  CAS  Google Scholar 

  • Sukontasukkul P, Pongsopha P, Chindaprasirt P, Songpiriyakij SJC, Materials B (2018b) Flexural performance and toughness of hybrid steel and polypropylene fibre reinforced geopolymer. 161:37–44

  • Thunuguntla CS, Gunneswara Rao TDJIJOS, Technology TOCE (2018) Appraisal on strength characteristics of alkali-activated GGBFS with low concentrations of sodium hydroxide. 42:231–243. https://doi.org/10.1007/s40996-018-0113-4

  • Tushar D, Das D, Pani A, Singh PJIJOS, Technology TOCE (2022) Geo-engineering and microstructural properties of geopolymer concrete and motar: a review. 1–25

  • Vaxman A, Narkis M, Siegmann A, Kenig SJPC (1989) Short‐fiber‐reinforced thermoplastics. Part III: Effect of fiber length on rheological properties and fiber orientation. 10(6):454–462

  • Venu M, Rao GM, Kumar YA, Madduru SRC, Bellum RR (2020) Influence of alkaline ratios on strength properties of fly ash-ground granulated blast furnace slag based geopolymer mortars.In: Paper presented at the IOP conference series: materials science and engineering

  • Verma M, Dev NJSC (2021) Sodium hydroxide effect on the mechanical properties of flyash‐slag based geopolymer concrete. 22:E368–E379

  • Vikas G, Rao TGJIJOS, Technology TOCE (2021) Setting time, workability and strength properties of alkali activated fly ash and slag based geopolymer concrete activated with high silica modulus water glass. 45:1483–1492. https://doi.org/10.1007/s40996-021-00598-8

  • Vilaplana JL, Baeza FJ, Galao O, Alcocel EG, Zornoza E, Garces P (2016) Mechanical properties of alkali activated blast furnace slag pastes reinforced with carbon fibers. Constr Build Mater 116:63–71. https://doi.org/10.1016/j.conbuildmat.2016.04.066

    Article  CAS  Google Scholar 

  • Wan X, Shen C, Wang P, Zhao T, Lu YJC, Materials B (2020a) A study on fracture toughness of ultra-high toughness geopolymer composites based on Double-K Criterion. 251:118851

  • Wan XM, Shen C, Wang PG, Zhao TJ, Lu Y (2020b) A study on fracture toughness of ultra-high toughness geopolymer composites based on Double-K Criterion. Constr Build Mater 251:118851. https://doi.org/10.1016/j.conbuildmat.2020.118851

  • Wang H, Li H, Yan FJC, Physicochemical SA, Aspects E (2005) Synthesis and mechanical properties of metakaolinite-based geopolymer. 268(1-3):1–6

  • Wardhono A, Law DW, Molyneaux TC (2016) Flexural strength of low calcium class f fly ash-based geopolymer concrete in long term performance. In: Paper presented at the materials science forum

  • Wong KJ, Zahi S, Low KO, Lim CC (2010) Fracture characterisation of short bamboo fibre reinforced polyester composites. Mater Des 31(9):4147–4154. https://doi.org/10.1016/j.matdes.2010.04.029

    Article  CAS  Google Scholar 

  • Wongruk R, Songpiriyakij S, Sukontasukkul P, Chindaprasirt P (2015) Properties of steel fiber reinforced geopolymer. In: Paper presented at the key engineering materials

  • Wongsa A, Kunthawatwong R, Naenudon S, Sata V, Chindaprasirt P (2020a) Natural fiber reinforced high calcium fly ash geopolymer mortar. Construction and Building Materials, 241:118143. https://doi.org/10.1016/j.conbuildmat.2020.118143

  • Wongsa A, Kunthawatwong R, Naenudon S, Sata V, Chindaprasirt PJC, Materials B (2020b) Natural fiber reinforced high calcium fly ash geopolymer mortar. 241:118143

  • Wu T, Yang X, Wei H, Liu X (2019) Mechanical properties and microstructure of lightweight aggregate concrete with and without fibers. Constr Build Mater 199:526–539. https://doi.org/10.1016/j.conbuildmat.2018.12.037

    Article  Google Scholar 

  • Xu F, Deng X, Peng C, Zhu J, Chen JJC, Materials B (2017a) Mix design and flexural toughness of PVA fiber reinforced fly ash-geopolymer composites. 150:179–189

  • Xu F, Deng X, Peng C, Zhu J, Chen JP (2017b) Mix design and flexural toughness of PVA fiber reinforced fly ash-geopolymer composites. Constr Build Mater 150:179–189. https://doi.org/10.1016/j.conbuildmat.2017.05.172

    Article  CAS  Google Scholar 

  • Xu H, Van Deventer JSJME (2002) Geopolymerisation of multiple minerals. 15(12):1131–1139

  • Yehia S, Douba A, Abdullahi O, Farrag S (2016) Mechanical and durability evaluation of fiber-reinforced self-compacting concrete. Constr Build Mater 121:120–133. https://doi.org/10.1016/j.conbuildmat.2016.05.127

    Article  CAS  Google Scholar 

  • Yusuf MO, Johari MAM, Ahmad ZA, Maslehuddin MJC, Materials B (2014). Strength and microstructure of alkali-activated binary blended binder containing palm oil fuel ash and ground blast-furnace slag. 52:504–510

  • Zhang P, Li QF (2013) Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume. Compos Part B Eng 45(1):1587–1594. https://doi.org/10.1016/j.compositesb.2012.10.006

    Article  CAS  ADS  Google Scholar 

  • Zhang P, Wang K, Wang J, Guo J, Hu S, Ling YJCI (2020a) Mechanical properties and prediction of fracture parameters of geopolymer/alkali-activated mortar modified with PVA fiber and nano-SiO2. 46(12):20027–20037

  • Zhang P, Wang KX, Wang J, Guo JJ, Hu SW, Ling YF (2020b) Mechanical properties and prediction of fracture parameters of geopolymer/alkali-activated mortar modified with PVA fiber and nano-SiO2. Ceram Int 46(12):20027–20037. https://doi.org/10.1016/j.ceramint.2020.05.074

    Article  CAS  Google Scholar 

  • Zhang ZH, Yao X, Zhu HJ, Hua SD, Chen Y (2009) Preparation and mechanical properties of polypropylene fiber reinforced calcined kaolin-fly ash based geopolymer. J Cent South Univ Technol 16(1):49–52. https://doi.org/10.1007/s11771-009-0008-4

    Article  CAS  Google Scholar 

  • Zollo RF (1997) Fiber-reinforced concrete: an overview after 30 years of development. Cem Concr Compos 19(2):107–122. https://doi.org/10.1016/S0958-9465(96)00046-7

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

The authors within the manuscript have made significant contributions in paper conception, result analysis and data interpretation.

Corresponding author

Correspondence to Ahmad Jan.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jan, A., Pu, Z., Khan, I. et al. A Comprehensive Review on the Effect of Fibers on Fresh and Engineering Properties of Geopolymer Concrete. Iran J Sci Technol Trans Civ Eng 48, 1–24 (2024). https://doi.org/10.1007/s40996-023-01166-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40996-023-01166-y

Keywords

Navigation