Skip to main content
Log in

Performance of Slag-Pumice-Based Alkali-Activated Mortar at Ambient Environment

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Civil Engineering Aims and scope Submit manuscript

Abstract

Sustainability in construction materials is a hot topic of research, and alkali-activated materials are believed to be a real alternative to OPC concrete. The manufacturing process of cement emits nearly 8% of CO2 into the atmosphere. This study utilised slag as a base binder in the alkali-activated mortar (AAM). The pumice powder was used as a replacement ratio of (0, 10, and 20) % by the mass of the slag. Three various ratios of alkali solution-to-binder ratio (s/b) were utilised (0.4, 0.5, and 0.6) for a detailed evaluation of the fresh and hardened properties of alkali-activated mortar. The setting time and flow test were conducted, and the mechanical characteristics were investigated through compressive strength, flexural strength, and direct tensile strength. Furthermore, fire resistance, water absorption, water sorptivity, porosity, density, efflorescence, and sulphate resistance were all examined to evaluate the durability characteristics of AAM. Results showed that increasing the amount of pumice powder in the mixture reduced its flowability for all s/b ratios. At a s/b of 0.4, increasing the pumice powder concentration degraded the mechanical and durability qualities. Simultaneously, increasing the amount of pumice powder at both s/b of 0.5 and 0.6 increased the mechanical and durability properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

AAM:

Alkali-activated mortar

s/b:

Solution-to-binder ratio

AAC:

Alkali-activated concrete

OPC:

Ordinary Portland cement

g:

Gram

°C:

Degree Celsius

hr:

Hour

MPa:

Mega pascal

SEM:

Scanning electronic microscopy

GGBFS:

Ground-granulated blast furnace slag

References

  • Abdollahnejad Z, Luukkonen T, Mastali M, Kinnunen P, Illikainen M (2018) Development of one-part alkali-activated ceramic/slag binders containing recycled ceramic aggregates. J Mat Civ Eng 31(2):4018386

    Article  Google Scholar 

  • Aljanabi M, Çevik A, Nicş A, Bakbak D, Kadhim S (2022) Residual mechanical performance of lightweight fiber-reinforced geopolymer mortar composites incorporating expanded clay after elevated temperatures. J Com Mat 56(11):1737–1752

    Article  Google Scholar 

  • Allen G (2015) Hydraulic lime mortar for stone, brick and block Masonry: a best practice guide. Routledge, Oxfordshine

    Book  Google Scholar 

  • Al-Zboon KK, Al-smadi BM, Al-Khawaldh S (2016) Natural volcanic tuff-based geopolymer for Zn removal: adsorption isotherm, kinetic, and thermodynamic study. Water, Air, & Soil Poll 227(7):1–22

    Article  Google Scholar 

  • Alzeebaree R et al (2021) Using of recycled clay brick/fine soil to produce sodium hydroxide alkali activated mortars. Adv Stru Eng 24(13):2996

    Article  Google Scholar 

  • Ameri F, Shoaei P, Zareei SA, Behforouz B (2019) Geopolymers vs. alkali-activated materials (AAMs): a comparative study on durability, microstructure, and resistance to elevated temperatures of lightweight mortars. Con Buil Mat 222:49–63

    Article  Google Scholar 

  • Antoni A, Purwantoro AAT, Suyanto WSPD, Hardjito D (2020) Fresh and hardened properties of high calcium fly ash-based geopolymer matrix with high dosage of borax. Ira J Sci Tech, Tra Civ Eng 44(1):535–543

    Article  Google Scholar 

  • ASTM C1585 - 04E (2004) Standard test method for Measurement of rate of absorption of water by hydraulic‐cement concretes. ASTM International, West Conshohocken, PA

  • ASTM C348 - 18 (2018) Standard test method for flexural strength of hydraulic-cement mortars standard test method for measurement the flaxural tensile strength of mortar

  • Bernal SA, Rodrguez ED, de Gutiérrez R, Provis JL (2012) Performance of alkali-activated slag mortars exposed to acids. J Sus Cem -Bas Mat 1(3):138–151

    Google Scholar 

  • Bingöl SS, Bilim C, Atics CD, Durak U (2020) Durability properties of geopolymer mortars containing slag. Ira J Scie Tech, Tran Civ Eng 44(1):561–569

    Article  Google Scholar 

  • Chakkor O, Altan MF, Canpolat O (2022) Elevated temperature, freezing-thawing and mechanical properties of limestone, marble, and basalt powders reinforced metakaolin-red mud-based geopolymer mortars. Ira J Scie Tech Tran Civ Eng. https://doi.org/10.1007/s40996-021-00797-3

    Article  Google Scholar 

  • Chi M (2017) Effects of the alkaline solution/binder ratio and curing condition on the mechanical properties of alkali-activated fly ash mortars. Sci Eng Comp Mat 24(5):773–782

    Article  Google Scholar 

  • Clausi M, Fernández-Jiménez AM, Palomo A, Tarantino SC, Zema M (2018) Reuse of waste sandstone sludge via alkali activation in matrices of fly ash and metakaolin. Con Bui Mat 172:212–223

    Article  Google Scholar 

  • Davidovits J (1991) Geopolymers: inorganic polymeric new materials. J the Ana Calo 37(8):1633–1656

    Article  Google Scholar 

  • Davidovits J (2008) Geopolymer chemistry and applications (Geopolymer Institute, Saint-Quentin, France)

  • Degefu DM, Liao Z, Berardi U, Labbé G (2022) The effect of activator ratio on the thermal and hygric properties of aerated geopolymers. J Bu Eng 45:103414. https://doi.org/10.1016/J.JOBE.2021.103414

    Article  Google Scholar 

  • Djobo JNY, Elimbi A, Tchakouté HK, Kumar S (2016) Mechanical properties and durability of volcanic ash based geopolymer mortars. Con Buil Mat 124:606–614

    Article  Google Scholar 

  • Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, Van Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mat Sci 42(9):2917–2933. https://doi.org/10.1007/s10853-006-0637-z

    Article  Google Scholar 

  • El-Hassan H, Ismail N (2018) Effect of process parameters on the performance of fly ash/GGBS blended geopolymer composites. J Sust Cem -Bas Mat 7(2):122–140

    Google Scholar 

  • Eren NA et al (2021) The effects of recycled tire rubbers and steel fibers on the performance of self-compacting alkali activated concrete. Per Poly Civ Eng. https://doi.org/10.3311/PPci.17601

    Article  Google Scholar 

  • Eren NA et al (2021) Fresh and hardened state performance of self-compacting slag based alkali activated concrete using nanosilica and steel fiber. J Com Mat. https://doi.org/10.1177/00219983211032390

    Article  Google Scholar 

  • Goldsworthy H, Zhu MIN (2009) Mortar studies towards the replication of Roman concrete. Arch 51(6):932–946

    Google Scholar 

  • Guerrieri M, Sanjayan JG (2010) Behavior of combined fly ash/slag-based geopolymers when exposed to high temperatures. Fir Mat : an Inter Jo 34(4):163–175

    Google Scholar 

  • Gülşan ME, Alzeebaree R, Rasheed AA, Niş A, Kurtoğlu AE (2019) Development of fly ash/slag based self-compacting geopolymer concrete using nano-silica and steel fiber. Con Bui Mat. https://doi.org/10.1016/j.conbuildmat.2019.03.228

    Article  Google Scholar 

  • Guo L, Wu Y, Xu F, Song X, Ye J, Duan P, Zhang Z (2020) Sulfate resistance of hybrid fiber reinforced metakaolin geopolymer composites. Com Part b: Eng 183:107689

    Article  Google Scholar 

  • Jha B, Singh DN (2011) A review on synthesis, characterization and industrial applications of flyash zeolites. J Ma Edu 33(1):65

    MathSciNet  Google Scholar 

  • Kabay N, Tufekci MM, Kizilkanat AB, Oktay D (2015) Properties of concrete with pumice powder and fly ash as cement replacement materials. Con Bui Mat 85:1–8

    Article  Google Scholar 

  • Kadhim S, Çevik A, Nicş A, Bakbak D, Aljanabi M (2022) Mechanical behavior of fiber reinforced slag-based geopolymer mortars incorporating artificial lightweight aggregate exposed to elevated temperatures. Con Bui Mat 315:125766

    Article  Google Scholar 

  • Kani EN, Allahverdi A, Provis JL (2012) Efflorescence control in geopolymer binders based on natural pozzolan. Cem Con Com 34(1):25–33

    Article  Google Scholar 

  • Kurtoğlu AE, Alzeebaree R, Aljumaili O, Niş A, Gülşan ME, Humur G, Çevik A (2018) Mechanical and durability properties of fly ash and slag based geopolymer concrete. Adv Con Con. https://doi.org/10.12989/acc.2018.6.4.345

    Article  Google Scholar 

  • Kurtoglu AE, Cevik A, Farhan OH, Alzeebaree R, Gülşan ME (2017) Sea water resistance of fly ash- and slag-based geopolymer concrete in Con: 2nd Inter Ene & Eng Con At: Gaziantep University, Gaziantep, Turkey, pp 273–279

  • Kwek SY, Awang H, Cheah CB (2021) Influence of liquid-to-solid and alkaline activator (sodium silicate to sodium hydroxide) ratios on fresh and hardened properties of alkali-activated palm oil fuel ash geopolymer. Mat 14(15):4253

    Google Scholar 

  • Mahdi SN, Hossiney N, Abdullah MMAB (2022) Strength and durability properties of geopolymer paver blocks made with fly ash and brick kiln rice husk ash. Cas Stu Con Mat 16:e00800

    Google Scholar 

  • Mason BJ (2012) The analysis of taupo pumice as an effective partial cement replacement in concrete

  • Mawlod AO (2020) Performance of one-part alkali activated recycled ceramic tile/fine soil binders. Adv Con Con 10(4):311–317

    Google Scholar 

  • Mobasher N, Bernal SA, Provis JL (2016) Structural evolution of an alkali sulfate activated slag cement. J Nuc Mat 468:97–104

    Article  Google Scholar 

  • Mohamed R, Abd Razak R, Mustafa Al Bakri Abdullah M, Khimi Shuib R, Aida Mohd Mortar N, Wazien Ahmad Zailani W (2019) Investigation of heat released during geopolymerization with fly ash based geopolymer. IOP Conf Series: Mater Sci Eng 551:012093. https://doi.org/10.1088/1757-899X/551/1/012093

    Article  Google Scholar 

  • Nath P, Sarker PK (2015) Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature. Cem Con Com 55:205–214

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geo Cos Acta 48(7):1523–1534

    Article  Google Scholar 

  • Nis A, Eren NA, Çevik A (2021) Effects of nanosilica and steel fibers on the impact resistance of slag based self-compacting alkali-activated concrete. Cer Inter 47(17):23905–23918

    Article  Google Scholar 

  • Noushini A, Babaee M, Castel A (2016) Suitability of heat-cured low-calcium fly ash-based geopolymer concrete for precast applications. Mag Con Res 68(4):163–177

    Article  Google Scholar 

  • Pouhet R (2015) Formulation and durability of metakaolin-based geopolymers. Univ Toul III-Paul Sabatier, Uni Tou

    Google Scholar 

  • Provis JL (2018) Alkali-activated binders. Cem Concr Res 114(40):48

    Google Scholar 

  • Provis JL, Bernal SA (2014) Geopolymers and related alkali-activated materials. Ann l Rev Mat Res 44:299–327

    Article  Google Scholar 

  • Shi C, Day RL (1993) Chemical activation of blended cements made with lime and natural pozzolans. Cem Concr Rese 23(6):1389–1396

    Article  Google Scholar 

  • Sleiman H, Perrot A, Amziane S (2010) A new look at the measurement of cementitious paste setting by Vicat test. Cem Concr Res 40(5):681–686

    Article  Google Scholar 

  • Standard A (2008) ASTM C109-standard test method for compressive strength of hydraulic cement mortars ASTM Inte , West Conshohocken, PA

  • Tekin I (2016) Properties of NaOH activated geopolymer with marble, travertine and volcanic tuff wastes. Con Bui Mat 127:607–617

    Article  Google Scholar 

  • van Deventer JSJ (2015) Microstructure and durability of alkali-activated materials as key parameters for standardization. J Sus Cem-Bas Mat 4(2):116–128

    Google Scholar 

  • Walkley B, San Nicolas R, Bernal S, Provis JL, van Deventer J (2015) Effect of MgO incorporation on the structure of synthetic alkali-activated calcium aluminosilicate binders in Conf. 27th Bienn. Natl. Conf. Concr. Inst. Aust

  • Winnefeld FB, Haha M, Le Saout G, Costoya M, Ko S-C, Lothenbach B (2015) Influence of slag composition on the hydration of alkali-activated slags. J Sus Cem-Bas Mat 4(2):85–100

    Google Scholar 

  • Xinyan W, Yanghai S, Liang H (2022) Performance of geopolymer concrete activated by sodium silicate and silica fume activator. Cas Stu Con Mat 17:e01513

    Google Scholar 

  • Yang T et al (2012) Mechanical property and structure of alkali-activated fly ash and slag blends. J Sus Cem-Bas Mat 1(4):167–178

    Google Scholar 

  • Zamanabadi SN, Zareei SA, Shoaei P, Ameri F (2019) Ambient-cured alkali-activated slag paste incorporating micro-silica as repair material: effects of alkali activator solution on physical and mechanical properties. Con Buil Mat 229:116911

    Article  Google Scholar 

  • Zhao F-Q, Ni W, Wang H-J, Liu H-J (2007) Activated fly ash/slag blended cement. Reso, Conse Recy 52(2):303–313

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arass Omer Mawlod.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mawlod, A.O., Bzeni, D.K.H.A. & Alzeebaree, R. Performance of Slag-Pumice-Based Alkali-Activated Mortar at Ambient Environment. Iran J Sci Technol Trans Civ Eng 47, 2131–2147 (2023). https://doi.org/10.1007/s40996-023-01061-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40996-023-01061-6

Keywords

Navigation