Skip to main content
Log in

Discrete Optimization of Truss Structures Using Variable Neighborhood Search

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Civil Engineering Aims and scope Submit manuscript

Abstract

Variable neighborhood search (VNS) is a metaheuristic approach for solving combinatorial and global optimization problems in discrete search space. This paper explores the possibility of applying VNS and its several extensions to the optimization of truss structures considering the cross sections of the members as discrete variables. The constraints imposed to the optimization are the allowable stress and the displacement limits on nodes. Various truss structure examples with fixed geometries are presented in order to demonstrate the effectiveness of the VNS and its extensions compared with other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adil B, Cengiz B (2020) Optimal design of truss structures using weighted superposition attraction algorithm. Eng Comput 36:965–979. https://doi.org/10.1007/s00366-019-00744-x

    Article  Google Scholar 

  • Avanthay C, Hertz A, Zufferey N (2003) A variable neighborhood search for graph coloring. Eur J Oper Res 151(2):379–388

    Article  MathSciNet  Google Scholar 

  • Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, New York

    Book  Google Scholar 

  • Camp C, Bichon B (2004) Design of space trusses using ant colony optimization. J Struct Eng ASCE 130(5):741–751

    Article  Google Scholar 

  • Camp C, Pezeshk S, Cao G (1998) Optimized design of two-dimensional structures using a genetic algorithmm. J Struct Eng ASCE 124(5):551–559

    Article  Google Scholar 

  • Colorni A, Dorigo M, Maniezzo V (1991) Distributed optimization by ant colonies. In: Proc., ECAL91-European conference on artificial life, Engineers’ Soc. of Western Pennsylvania, Paris, France, pp 134–142

  • Croce F, Salassa F (2014) A variable neighborhood search based matheuristic for nurse rostering problems. Ann Oper Res 218(1):185–199

    Article  MathSciNet  Google Scholar 

  • Degertekin S, Lamberti L, Ugur IB (2019) Discrete sizing/layout/topology optimization of truss structures with an advanced Jaya algorithm. Appl Soft Comput J 79:363–390. https://doi.org/10.1016/j.asoc.2019.03.058

    Article  Google Scholar 

  • Eirgash M, Toğan V, Dede T (2019) A multi-objective decision making model based on TLBO for the time-cost trade-off problems. Struct Eng Mech 71(3):139–151. https://doi.org/10.12989/sem.2019.71.2.139

    Article  Google Scholar 

  • Erbatur F, Hasancebi O, Tutuncu I, Kilic H (2000) Optimal design of planar and space structures with genetic algorithms. Comput Struct 75(2):209–224

    Article  Google Scholar 

  • Flager F, Soremekun G, Adya A, Shea K, Haymaker J, Fisher M (2014) Fully constrained design: a general and scalable method for discrete member sizing optimization of steel truss structures. Comput Struct 140:55–65

    Article  Google Scholar 

  • Geem Z, Kim JH, Loganathan G (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68

    Article  Google Scholar 

  • Goldberg D (1989) Genetic algorithms in search optimization and machine learning. Addison-Wesley, Boston

    MATH  Google Scholar 

  • Grzywiński M (2020) Size and shape design optimization of truss structures using the jaya algorithm. Comput Assist Methods Eng Sci 27(2):177–184

    Google Scholar 

  • Grzywiński M, Dede T, Özdemir Y (2019a) Optimization of the braced dome structures by using Jaya algorithm with frequency constraints. Steel Compos Struct 30(1):47–55. https://doi.org/10.12989/scs.2019.30.1.047

    Article  Google Scholar 

  • Grzywiński M, Selejdak J, Dede T (2019b) Shape and size optimization of trusses with dynamic constraints using a metaheuristic algorithm. Steel Compos Struct 33(5):747–753. https://doi.org/10.12989/scs.2019.33.5.747

    Article  Google Scholar 

  • Hansen P, Mladenovic N (2001a) Variable neighborhood decomposition search. J Heuristics 7(4):335–350

    Article  Google Scholar 

  • Hansen P, Mladenovic N (2001b) Variable neighborhood search: principles and applications. Eur J Oper Res 130(3):449–467

    Article  MathSciNet  Google Scholar 

  • Hasançebi O, Çarbas S, Doǧan E, Erdal F, Saka MP (2009) Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures. Comput Struct 97:284–302. https://doi.org/10.1016/j.compstruc.2009.01.002

    Article  Google Scholar 

  • Jafari M, Salajegheh E, Salajegheh J (2019) An efficient hybrid of elephant herding optimization and cultural algorithm for optimal design of trusses. Eng Comput 35:781–801. https://doi.org/10.1007/s00366-018-0631-5

    Article  Google Scholar 

  • Kalemci E, İkizler S, Dede T, AngIn Z (2020) Design of reinforced concrete cantilever retaining wall using grey wolf optimization algorithm. Structures 23:245–253. https://doi.org/10.1016/j.istruc.2019.09.013

    Article  Google Scholar 

  • Kaveh A, Mahjoubi S (2019) Hypotrochoid spiral optimization approach for sizing and layout optimization of truss structures with multiple frequency constraints. Eng Comput 54:1443–1462. https://doi.org/10.1007/s00366-018-0675-6

    Article  Google Scholar 

  • Kaveh A, Talatahari S (2009) Particle swarm optimizer ant colony and harmony search scheme hybridized for optimization of truss structures. Comput Struct 87(5–6):267–283

    Article  Google Scholar 

  • Kaveh A, Zakian P (2018) Improved GWO algorithm for optimal design of truss structures. Eng Comput 34:685–707. https://doi.org/10.1007/s00366-017-0567-1

    Article  Google Scholar 

  • Kennedy J, Eberhart R, Shi Y (2001) Swarm intelligence. Morgan Kaufmann Publishers, San Francisco

    Google Scholar 

  • Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MathSciNet  Google Scholar 

  • Kripka M (2004) Discrete optimization of trusses by simulated annealing. J Braz Soc Mech Sci 26(2):170–173

    Google Scholar 

  • Lazic J, Hana S, Mladenović N, Urošević D (2010) Variable neighbourhood decomposition search for 01 mixed integer programs. Comput Oper Res 37(6):1055–1067

    Article  MathSciNet  Google Scholar 

  • Lee K, Geem Z (2004) A new structural optimization method based on the harmony search algorithm. Comput Struct 82(9–10):781–798

    Article  Google Scholar 

  • Lee K, Geem Z, Lee S, Bae K (2005) The harmony search heuristic algorithm for discrete structural optimization. Eng Optim 37(7):663–684

    Article  MathSciNet  Google Scholar 

  • Li L, Huang Z, Liu F (2009) A heuristic particle swarm optimization method for truss structures with discrete variables. Comput Struct 87(7–8):435–443

    Article  Google Scholar 

  • Mladenovic N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24(11):1097–1100

    Article  MathSciNet  Google Scholar 

  • Moreno-Perez J, Hansen P, Mladenovic N (2005) Parallel variable neighborhood search. In: Alba E (ed) Parallel metaheuristics: a new class of algorithms. Wiley, New York, pp 247–266

    Chapter  Google Scholar 

  • Parreno F, Alvarez-Valdes R, Oliveira J, Tamarit J (2010) Neighborhood structures for the container loading problem: a VNS implementation. J Heuristics 16(1):1–22

    Article  Google Scholar 

  • Pouriyanezhad E, Rahami H, Mirhosseini S (2020) Truss optimization using eigenvectors of the covariance matrix. Eng Comput. https://doi.org/10.1007/s00366-020-00943-x

    Article  Google Scholar 

  • Rajeev S, Krishnamoorthy C (1992) Discrete optimization of structures using genetic algorithm. J Struct Eng ASCE 118(5):1233–1250

    Article  Google Scholar 

  • Sonmez M (2011) Discrete optimum design of truss structures using artificial bee colony algorithm. Struct Multidiscip O 43(1):85–97

    Article  Google Scholar 

  • Togan V, Daloglu A (2008) An improved genetic algorithm with initial population strategy and self-adaptive member grouping. Comput Struct 86:1024–1218

    Article  Google Scholar 

  • Wu S, Chow P (1995) Steady-state genetic algorithms for discrete optimization of trusses. Comput Struct 56(16):979–991

    Article  Google Scholar 

  • Zhang C, Lin Z, Zu L (2005) Variable neighborhood search with permutation distance for QAP. Lect Notes Comput Sci 3684:81–88

    Article  Google Scholar 

Download references

Funding

Funding was provided by Hrvatska Zaklada za Znanost (Grant No. HRZZ-IP-2018-01-6774).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damir Sedlar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedlar, D., Lozina, Z. & Tomac, I. Discrete Optimization of Truss Structures Using Variable Neighborhood Search. Iran J Sci Technol Trans Civ Eng 46, 1249–1264 (2022). https://doi.org/10.1007/s40996-021-00704-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40996-021-00704-w

Keywords

Navigation