Skip to main content
Log in

Insight to Damage Identification in Truss-Type Structures Using a Second-Order Gradient-Based Algorithm

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Civil Engineering Aims and scope Submit manuscript

Abstract

The aim of structural health monitoring is to detect damage in structural systems in order to timely repair, maintain and prevent structural damage at the earliest possible time. Given the increasing number of these damages, developing new and applied methods to identify failures leading to such damages is very necessary. The purpose of this present study is to develop effective and new method according to updating structures limited element model to solve the nonlinear problem of large-scale truss-type structures damage detection with high number of elements in which in the formed equations system to determine the vector of damage, the number of equations outnumbers the number of unknowns. The proposed technique has been carried out by the aid of one of the most effective numerical optimization methods among algorithms based on gradient called second-order Levenberg–Marquardt algorithm. Also in this study, by using a proposed method based on sensitivity analysis, a linear solution is presented for the problem of nonlinear damage detection. By using structural acceleration response resulted by time history excitation obtained from nodes with the sensor, the structure damage detection will be done by an algorithm during an iterative cycle and updating the sensitivity matrix and the location and extent of damages are obtained in the presence of different noise level or imperfect input data. The damage has been supposed to be a linear reduction in the modulus of elasticity. The obtained results demonstrate the appropriate performance and accuracy of the proposed damage detection method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  • Arora JS (1989) Introduction to optimum design. McGraw-Hill, New York

    Google Scholar 

  • Assimi H, Jamali A, Nariman-zadeh N (2018) Multi-objective sizing and topology optimization of truss structures using genetic programming based on a new adaptive mutant operator. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3401-9

    Article  Google Scholar 

  • Au FTK, Cheng YS, Tham LG, Bai ZZ (2003) Structural damage detection based on a micro genetic algorithm using incomplete and noisy test data. J Sound Vib 259(5):1081–1094

    Article  Google Scholar 

  • Bakhtiari-Nejad F, Rahai A, Esfandiari A (2005) A structural damage detection method using static noisy data. Eng Struct 27(12):1784–1793

    Article  Google Scholar 

  • Begambre O, Laier JE (2009) A hybrid particle swarm optimization–simplex algorithm (PSOS) for structural damage identification. Adv Eng Softw 40(9):883–891

    Article  Google Scholar 

  • Bureerat S, Pholdee N (2018) Inverse problem based differential evolution for efficient structural health monitoring of trusses. Appl Soft Comput 66:462–472

    Article  Google Scholar 

  • Cao M, Ye L, Zhou L, Su Z, Bai R (2011) Sensitivity of fundamental mode shape and static deflection for damage identification in cantilever beams. Mech Syst Signal Process 25(2):630–643

    Article  Google Scholar 

  • Chang KC, Kim CW (2016) Modal-parameter identification and vibration-based damage detection of a damaged steel truss bridge. Eng Struct 122:156–173

    Article  Google Scholar 

  • Dinh-Cong D, Ho-Huu V, Vo-Duy T, Ngo-Thi HQ, Nguyen-Thoi T (2017) Efficiency of Jaya algorithm for solving the optimization-based structural damage identification problem based on a hybrid objective function. Eng Optim 50(8):1233–1251. https://doi.org/10.1080/0305215X.2017.1367392

    Article  MathSciNet  Google Scholar 

  • Dinh-Cong D, Dang-Trung H, Nguyen-Thoi T (2018a) An efficient approach for optimal sensor placement and damage identification in laminated composite structures. Adv Eng Softw 119:48–59. https://doi.org/10.1016/j.advengsoft.2018.02.005

    Article  Google Scholar 

  • Dinh-Cong D, Vo-Duy T, Ho-Huu V, Nguyen-Thoi T (2018b) Damage assessment in plate-like structures using a two-stage method based on modal strain energy change and Jaya algorithm. Inverse Probl Sci Eng 27(2):166–189. https://doi.org/10.1080/17415977.2018.1454445

    Article  MathSciNet  MATH  Google Scholar 

  • Dinh-Cong D, Vo-Duy T, Nguyen-Thoi T (2018c) Damage assessment in truss structures with limited sensors using a two-stage method and model reduction. Appl Soft Comput J 66:264–277. https://doi.org/10.1016/j.asoc.2018.02.028

    Article  Google Scholar 

  • Doebling S, Farrar C, Prime M, Shevits D (1996) Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review. Los Alamos National Laboratory, Los Alamos

    Book  Google Scholar 

  • Doebling S, Farrar C, Prime M (1998) A summary review of vibration-based damage identification methods. Shock Vib Dig 30(2):91–105

    Article  Google Scholar 

  • Ernest S, Dewangan U (2017) Tower truss damage detection using eigen frequency evaluation. Today Proc 4(9):9723–9726

    Google Scholar 

  • Fallah N, Vaez SRH, Mohammadzadeh A (2018) Multi-damage identification of large-scale truss structures using a two-step approach. J Build Eng 19:494–505

    Article  Google Scholar 

  • Friswell M, Penny J (1992) A simple nonlinear modal of a cracked beam. In: Proceeding of the 10th international modal analysis conference, San Diego, California

  • Friswell MI, Penny JET, Garvey SD (1998) A combined genetic and eigen sensitivity algorithm for the location of damage in structures. Comput Struct 69(5):547–556

    Article  Google Scholar 

  • Gomes HM, Silva NRS (2008) Some comparisons for damage detection on structures using genetic algorithms and modal sensitivity method. Appl Math Model 32(11):2216–2232

    Article  Google Scholar 

  • Hansen RJ (1971) A numerical method for solving Fredholm integral equations of the first kind using singular values. SIAM J Numer Anal 8(3):616–622

    Article  MathSciNet  Google Scholar 

  • Hao H, Xia Y (2002) Vibration-based damage detection of structures by genetic algorithm. J Comput Civ Eng 16(3):222–229

    Article  Google Scholar 

  • Hjelmstad KD, Shin S (1997) Damage detection and assessment of structural from static response. J Eng Mech ASCE 123(6):568–576

    Article  Google Scholar 

  • Jaishi B, Ren WX (2005) Structural finite element model updating using ambient vibration test results. J Struct Eng 131(4):617–628

    Article  Google Scholar 

  • Kaveh A, Mahdavi V (2016) Damage identification of truss structures using CBO and ECBO algorithms. Adv Eng Softw 17(1):75–89

    Google Scholar 

  • Kaveh A, Zolghadr A (2015) An improved CSS for damage detection of truss structures using changes in natural frequencies and mode shapes. Adv Eng Softw 80:93–100. https://doi.org/10.1016/j.advengsoft.2014.09.010

    Article  Google Scholar 

  • Khatir S, Wahab AM (2018) Fast simulations for solving fracture mechanics inverse problems using POD-RBF XIGA and Jaya algorithm. Eng Fract Mech 205:285–300

    Article  Google Scholar 

  • Khatir S, Wahab AM (2019) A computational approach for crack identification in plate structures using XFEM, XIGA, PSO and Jaya algorithm. Theor Appl Fract Mech 103:102240. https://doi.org/10.1016/j.tafmec.2019.102240

    Article  Google Scholar 

  • Khatir S, Brahim B, Capozucca R, Wahab MA (2017) Damage detection in CFRP composite beams based on vibration analysis using proper orthogonal decomposition method with radial basis function and Cuckoo Search algorithm. Compos Struct 187:344–353. https://doi.org/10.1016/j.compstruct.2017.12.058

    Article  Google Scholar 

  • Khatir S, Dekemele K, Loccufier M, Khatir T, Wahab MA (2018) Crack identification method in beam-like structures using changes in experimentally measured frequencies and particle swarm optimization. C R Mec 346(2):110–120. https://doi.org/10.1016/j.crme.2017.11.008

    Article  Google Scholar 

  • Khatir S, Wahab AM, Djilali B, Khatir T (2019) Structural health monitoring using modal strain energy damage indicator coupled with teaching-learning-based optimization algorithm and isogoemetric analysis. J Sound Vib 448:230–246. https://doi.org/10.1016/j.jsv.2019.02.017

    Article  Google Scholar 

  • Koh CG, Chen YF, Liaw CY (2003) A hybrid computational strategy for identification of structural parameters. Comput Struct 81(2):107–117

    Article  Google Scholar 

  • Kokot S, Zembaty Z (2009) Damage reconstruction of 3D frames using genetic algorithms with Levenberg–Marquardt local search. Soil Dyn Earthq Eng 29(2):311–323

    Article  Google Scholar 

  • Lee J (2009) Identification of multiple cracks in a beam using natural frequencies. J Sound Vib 320(3):482–490

    Article  Google Scholar 

  • Li X, Law S (2010) Adaptive Tikhonov regularization for damage detection based on nonlinear model updating. Mech Syst Signal Process 24(6):1646–1664

    Article  Google Scholar 

  • Lu ZR, Law SS (2007) Identification of system parameters and input force from output only. Mech Syst Signal Process 21(5):2099–2111

    Article  Google Scholar 

  • Majumdar A, Maiti DK, Maity D (2012) Damage assessment of truss structures from changes in natural frequencies using ant colony optimization. Appl Math Comput 218(19):9759–9772. https://doi.org/10.1016/j.amc.2012.03.031

    Article  MATH  Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soci Ind Appl Math 11(2):431–441

    Article  MathSciNet  Google Scholar 

  • Mazzoni S, McKenna F, Scott MH, Fenves GL, Jeremic B (2003) Open system for earthquake engineering simulation (OpenSees) [command language manual]. University of California, Berkeley

    Google Scholar 

  • Mehrjoo M, Khaji N, Moharrami H, Bahreininejad A (2008) Damage detection of truss bridge joints using Artificial Neural Networks. Expert Syst Appl 35(3):1122–1131

    Article  Google Scholar 

  • Meruane V, Heylen W (2011) A hybrid real genetic algorithm to detect structural damage using modal properties. Mech Syst Signal Process 25(5):1559–1573

    Article  Google Scholar 

  • Nguyen DH, Bui TT, De Roeck G, Wahab MA (2019) Damage detection in Ca-Non Bridge using transmissibility and artificial neural networks. Struct Eng Mech 71(2):175–183. https://doi.org/10.12989/sem.2019.71.2.175

    Article  Google Scholar 

  • Salawu O (1997) Detection of structural damage through changes in frequency: a review. Eng Struct 19(9):718–723

    Article  Google Scholar 

  • Seyedpoor SM, Norouzi E, Ghasemi S (2018) Structural damage detection using a multi-stage improved differential evolution algorithm (numerical and experimental). Smart Struct Syst 21(2):235–248

    Google Scholar 

  • Shih HW, Thambiratnam DP, Chan THT (2011) Damage detection in truss bridges using vibration based multi-criteria approach. Struct Eng Mech 39:187–206

    Article  Google Scholar 

  • Sohn H, Farar C, Hemez F, Shunk D, Stinemates D, Nadler B (2003) A review of structural e; monitoring literature: 1996–2001. Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  • Teughels A, Roeck GD (2005) Damage detection and parameter identification by finite element model updating. Arch Comput Methods Eng 12(2):123–164

    Article  Google Scholar 

  • Teughels A, Maeck J, De Roeck G (2002) Damage assessment by FE model updating using damage functions. Comput Struct 80(25):1869–1879

    Article  Google Scholar 

  • Tiachacht S, Bouazzouni A, Khatir S, Wahab MA, Behtani A, Capozucca R (2018) Damage assessment in structures using combination of a modified Cornwell indicator and genetic algorithm. Eng Struct 177:421–430. https://doi.org/10.1016/j.engstruct.2018.09.070

    Article  Google Scholar 

  • Tran-Ngoc H, Khatir S, De Roeck G, Bui-Tien T, Nguyen-Ngoc L, Wahab MA (2018) Model updating for Nam O Bridge using particle swarm optimization algorithm and genetic algorithm. Sensors 18(12):4131. https://doi.org/10.3390/s18124131

    Article  Google Scholar 

  • Wang J, Yang QS (2012) Modified Tikhonov regularization in model updating for damage identification. Struct Eng Mech 44(5):585–600

    Article  Google Scholar 

  • Wang FL, Chan THT, Thambiratnam DP, Tan ACC, Cowled CJL (2012) Correlation-based damage detection for complicated truss bridges using multi-layer genetic algorithm. Adv Struct Eng 15(5):693–706. https://doi.org/10.1260/1369-4332.15.5.693

    Article  Google Scholar 

  • Weber B, Paultre P, Proulx J (2009) Consistent regularization of nonlinear model updating for damage identification. Mech Syst Signal Process 23(6):1965–1985

    Article  Google Scholar 

  • Zenzen R, Belaidi I, Khatir S, Wahab MA (2018) A damage identification technique for beam-like and truss structures based on FRF and Bat algorithm. C R Mec 346(12):1253–1266. https://doi.org/10.1016/j.crme.2018.09.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Mohammadizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahanfekr, E., Mohammadizadeh, M.R. & Shojaee, S. Insight to Damage Identification in Truss-Type Structures Using a Second-Order Gradient-Based Algorithm. Iran J Sci Technol Trans Civ Eng 45, 2145–2175 (2021). https://doi.org/10.1007/s40996-020-00426-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40996-020-00426-5

Keywords

Navigation