Skip to main content
Log in

Analysis of a Virus Model with Cure Rate, General Incidence Function and Time Delay

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

In this work, we investigate a virus model with time delay and function of general incidence. We illustrate the solvability through solutions for the model. Using Lyapunov functionals, we prove that if the basic reproduction number \(R_0 \le 1\), then the infection-free equilibrium is globally asymptotically stable, and when \(R_0 > 1\), the infection will persist by the global asymptotic stability of infection equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Elaiw AM, Alshamrani NH (2015) Global stability of humoral immunity virus dynamics models with nonlinear infection rate and removal. Nonlinear Anal (RWA) 26:161–190

    Article  MathSciNet  Google Scholar 

  • Graef JR, Tunc C (2015) Global asymptotic stability and boundedness of certain multi-delay functional differential equations of the third order. Math Methods Appl Sci 38(17):3747–3752

    Article  MathSciNet  Google Scholar 

  • Hattaf K, Yousfi N (2011) Hepatitis B virus infection model with logistic hepatocyte growth and cure rate. Appl Math Sci 5(47):2327–2335

    MathSciNet  MATH  Google Scholar 

  • Hattaf K, Yousfi N (2015) A generalized HBV model with diffusion and two delays. Comput Math Appl 69(1):31–40

    Article  MathSciNet  Google Scholar 

  • Hattaf K, Yousfi N, Tridane A (2012) Mathematical analysis of a virus dynamics model with general incidence rate and cure rate. Nonlinear Anal (RWA) 13(4):1866–1872

    Article  MathSciNet  Google Scholar 

  • Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M (1995) Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373:123–126

    Article  Google Scholar 

  • Huang G, Ma W, Takeuchi Y (2009) Global properties for virus dynamics model with Beddington–DeAngelis functional response. Appl Math Lett 22(11):1690–1693

    Article  MathSciNet  Google Scholar 

  • Huang G, Takeuchi Y, Ma W (2010) Lyapunov functionals for delay differential equations model of viral infections. SIAM J Appl Math 70(7):2693–2708

    Article  MathSciNet  Google Scholar 

  • Li D, Ma W (2007) Asymptotic properties of an HIV-1 infection model with time delay. J Math Anal Appl 335(1):683–691

    Article  MathSciNet  Google Scholar 

  • Lin J, Xu R, Tian X (2017) Threshold dynamics of an HIV-1 virus model with both virus-to-cell and cell-to-cell transmissions, intracellular delay, and humoral immunity. Appl Math Comput 315:516–530

    MathSciNet  MATH  Google Scholar 

  • Liu Q, Jiang D, Hayat T, Alsaedi A (2018) Stationary distribution and extinction of a stochastic HIV-1 model with Beddington–DeAngelis infection rate. Physica A Stat Mech Appl 512:414–426

    Article  MathSciNet  Google Scholar 

  • McCluskey CC, Yang Y (2015) Global stability of a diffusive virus dynamics model with general incidence function and time delay. Nonlinear Anal (RWA) 25:64–78

    Article  MathSciNet  Google Scholar 

  • Meiss JD (2007) Differential dynamical systems. Society for Industrial and Applied Mathematics (SIAM), New York

    Book  Google Scholar 

  • Murray RM, Li Z, Sastry SS, Sastry SS (1994) A mathematical introduction to robotic manipulation. CRC Press, London

    MATH  Google Scholar 

  • Nakata Y (2011) Global dynamics of a viral infection model with a latent period and Beddington–DeAngelis response. Nonlinear Anal (TMA) 74(9):2929–2940

    Article  MathSciNet  Google Scholar 

  • Nelson PW, Perelson AS (2002) Mathematical analysis of delay differential equation models of HIV-1 infection. Math Biosci 179(1):73–94

    Article  MathSciNet  Google Scholar 

  • Nelson PW, Murray J, Perelson AS (2000) A model of HIV-1 pathogenesis that includes an intracellular delay. Math Biosci 163(2):201–215

    Article  MathSciNet  Google Scholar 

  • Nowak MA, Bonhoeffer S, Hill AM, Boehme R, Thomas HC, McDade H (1996) Viral dynamics in hepatitis B virus infection. Proc Natl Acad Sci 93(9):4398–4402

    Article  Google Scholar 

  • Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD (1996) HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271:1582–1586

    Article  Google Scholar 

  • Redlinger R (1984) Existence theorems for semilinear parabolic systems with functionals. Nonlinear Anal (TMA) 8(6):667–682

    Article  MathSciNet  Google Scholar 

  • Shu H, Wang L, Watmough J (2013) Global stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL immune responses. SIAM J Appl Math 73(3):1280–1302

    Article  MathSciNet  Google Scholar 

  • Sun H, Wang J (2019) Dynamics of a diffusive virus model with general incidence function, cell-to-cell transmission and time delay. Comput Math Appl 77:284–301

    Article  MathSciNet  Google Scholar 

  • Tunc C (2008) On the stability of solutions for non-autonomous delay differential equations of third-order. Iran. J. Sci. Technol. Trans. A Sci. 32(4):261–273

    MathSciNet  MATH  Google Scholar 

  • Tunc C (2009) On the stability and boundedness of solutions to third-order nonlinear differential equations with retarded argument. Nonlinear Dyn 57(1–2):97–106

    Article  MathSciNet  Google Scholar 

  • Tunc C (2010) Stability and bounded of solutions to non-autonomous delay differential equations of the third-order. Nonlinear Dyn 62(4):945–953

    Article  MathSciNet  Google Scholar 

  • Tunc C (2010) On the stability and boundedness of solutions of nonlinear third-order differential equations with delay. Filomat 24(3):1–10

    Article  MathSciNet  Google Scholar 

  • Van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180(1–2):29–48

    Article  MathSciNet  Google Scholar 

  • Wang K, Wang W (2007) Propagation of HBV with spatial dependence. Math Biosci 210(1):78–95

    Article  MathSciNet  Google Scholar 

  • Wang K, Wang W, Son S (2008) Dynamics of an HBV model with diffusion and delay. J Theoret Biol 253(1):36–44

    Article  MathSciNet  Google Scholar 

  • Wang FB, Huang Y, Zou X (2014) Global dynamics of a PDE in-host viral model. Appl Anal 93(11):2312–2329

    Article  MathSciNet  Google Scholar 

  • Wang J, Yang J, Kuniya T (2016) Dynamics of a PDE viral infection model incorporating cell-to-cell transmission. J Math Anal Appl 444(2):1542–1564

    Article  MathSciNet  Google Scholar 

  • Xu R, Ma Z (2009) An HBV model with diffusion and time delay. J Theoret Biol 257(3):499–509

    Article  MathSciNet  Google Scholar 

  • Yang Y, Xu Y (2016) Global stability of a diffusive and delayed virus dynamics model with Beddington–DeAngelis incidence function and CTL immune response. Comput Math Appl 71(4):922–930

    Article  MathSciNet  Google Scholar 

  • Zhang Y, Xu Z (2014) Dynamics of a diffusive HBV model with delayed Beddington–DeAngelis response. Nonlinear Anal (RWA) 15:118–139

    Article  MathSciNet  Google Scholar 

  • Zhou X, Cui J (2011) Global stability of the viral dynamics with Crowley–Martin functional response. Bull Korean Math Soc 48(3):555–574

    Article  MathSciNet  Google Scholar 

  • Zhu L, Zhao H, Wang X (2015) Stability and bifurcation analysis in a delayed reaction–diffusion malware propagation model. Comput Math Appl 69:852–875

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their suggestions and helpful comments which improved the presentation of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nemat Nyamoradi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghiei Karaji, P., Nyamoradi, N. Analysis of a Virus Model with Cure Rate, General Incidence Function and Time Delay. Iran J Sci Technol Trans Sci 45, 661–668 (2021). https://doi.org/10.1007/s40995-020-01040-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-020-01040-w

Keywords

Mathematics Subject Classification

Navigation