Skip to main content
Log in

Distinguishing newforms by their Hecke eigenvalues

  • Research
  • Published:
Research in Number Theory Aims and scope Submit manuscript

Abstract

Let fg be distinct normalized Hecke eigenforms of weights \(k_1,k_2\) lying in the subspace of newforms with Fourier coefficients \(\{ n^{(k_1 -1)/2} \lambda _f(n)\}_{n \in \mathbb {N}}\) and \(\{ n^{(k_2 -1)/2}\lambda _g(n) \}_{ n \in \mathbb {N}}\) respectively. For such newforms fg of CM type and primes p, we study the natural density of the set

$$\begin{aligned} S = \{ p ~|~ \lambda _f(p) = \lambda _g(p) \}. \end{aligned}$$

We show that the upper natural density of S is \(\le 3/4\) if \(f \ne g\) and it is equal to 1/2 when f and g have different weights and have the same associated CM (quadratic) field. Further, f and g have different associated CM (quadratic) fields if and only if the natural density of S is 1/4. When at least one of fg is a non-CM form, we study the natural density of the sets

$$\begin{aligned} S_{+}(x, \alpha ) = \{ p \le x ~|~ \theta _f(p) + \theta _g(p) = \alpha \} \text { and }\\ S_{-}(x, \beta ) = \{ p \le x ~|~ \theta _f(p) - \theta _g(p) = \beta \} \end{aligned}$$

where \(\theta _f(p), \theta _g(p) \in [0, \pi ]\) are the angles associated to the p-th Hecke eigen values of fg respectively and \(\alpha \in [0, 2\pi ], ~\beta \in [-\pi , \pi ]\). In this case, we show that \(S_{+}(x, \alpha )\) and \(S_{-}(x, \beta )\) have natural density zero when f and g are distinct and not twists of each other. Finally, we establish an explicit link between the elements of these sets and sign changes of Fourier coefficients at prime powers which allows us to improve a number of existing results in this set-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkin, A.O.L., Lehner, J.: Hecke operators on \(\Gamma _0(m)\). Math. Ann. 185, 134–160 (1970)

    Article  MathSciNet  Google Scholar 

  2. Arias-de-Reyna, S., Inam, I., Wiese, G.: On conjectures of Sato-Tate and Bruinier-Kohnen. Ramanujan J. 36(3), 455–481 (2015)

    Article  MathSciNet  Google Scholar 

  3. Balakrishnan, J., Craig, W., and Ono, K.: Variations of Lehmer’s conjecture for Ramanujan’s tau function. J. Number Theory. https://doi.org/10.1016/j.jnt.2020.04.009

  4. Barnet-Lamb, T., Geraghty, D., Harris, M., Taylor, R.: A family of Calabi-Yau varieties and potential automorphy II. Publ. Res. Inst. Math. Sci. 47(1), 29–98 (2011)

    Article  MathSciNet  Google Scholar 

  5. Brumley, F.: Effective multiplicity one on \(\rm {GL}_N\) and narrow zero-free regions for Rankin-Selberg \(L\) -functions. Am. J. Math. 128, 1455–1474 (2006)

    Article  MathSciNet  Google Scholar 

  6. Ganguly, S., Hoffstein, J., Sengupta, J.: Determining modular forms on \(SL_2({\mathbb{Z}})\) by central values of convolution \(L\) -functions. Math. Ann. 345, 843–857 (2009)

    Article  MathSciNet  Google Scholar 

  7. Ghosh, A., Sarnak, P.: Real zeros of holomorphic Hecke cusp forms. J. Eur. Math. Soc. (JEMS) 14(2), 465–487 (2012)

    Article  MathSciNet  Google Scholar 

  8. Gun, S., Kohnen, W., Rath, P.: Simultaneous sign change of Fourier coefficients of two cusp forms. Arch. Math. (Basel) 105(5), 413–424 (2015)

    Article  MathSciNet  Google Scholar 

  9. Gun, S., Kumar, B., Paul, B.: The first simultaneous sign change and non-vanishing of Hecke eigenvalues of newforms. J. Number Theory 200, 161–184 (2019)

    Article  MathSciNet  Google Scholar 

  10. Gun, S., Murty, V.K.: A variant of Lehmer’s conjecture, II: the CM case. Cand. J. Math. 63, 298–326 (2011)

    Article  MathSciNet  Google Scholar 

  11. Harris, M.: Galois representations, automorphic forms, and the Sato-Tate conjecture. Indian J. Pure Appl. Math. 45(5), 707–746 (2014)

    Article  MathSciNet  Google Scholar 

  12. Hecke, E., Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, Zweite Mitteilung, Math. Z. 6, : 11–51; reprinted in Mathematische Werke. Vandenhoeck & Ruprecht, Göttingen 1959, 249–289 (1920)

  13. Kohnen, W., Martin, Y.: Sign changes of Fourier coefficients of cusp forms supported on prime power indices. Int. J. Number Theory 10(8), 1921–1927 (2014)

    Article  MathSciNet  Google Scholar 

  14. Kohnen, W., Sengupta, J.: On the first sign change of Hecke eigenvalues of newforms. Math. Z. 254, 173–184 (2006)

    Article  MathSciNet  Google Scholar 

  15. Kohnen, W., Sengupta, J.: Signs of Fourier coefficients of two cusp forms of different weights. Proc. Am. Math. Soc. 137(11), 3563–3567 (2009)

    Article  MathSciNet  Google Scholar 

  16. Kowalski, E., Lau, Y.-K., Soundararajan, K., Wu, J.: On modular signs. Math. Proc. Cambridge Philos. Soc. 149(3), 389–411 (2010)

    Article  MathSciNet  Google Scholar 

  17. Kowalski, E., Robert, O., Wu, J.: Small gaps in coefficients of L-functions and \({\mathfrak{B}}\)-free numbers in short intervals. Rev. Mat. Iberoamericana 23(1), 281–326 (2007)

    Article  MathSciNet  Google Scholar 

  18. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Wiley, New York (1974)

    MATH  Google Scholar 

  19. Lau, Y.-K., Liu, J., and Wu, J.: Sign changes of the coefficients of automorphic \(L\)-functions. In: S. Kanemitsu, H. Li, and J. Liu (eds.) Number Theory: Arithmetic in Shangri-La, pp. 141–181. Hackensack, NJ: World Scientific Publishing Co. Pvt. Ltd. (2013)

  20. Lehmer, D.H.: The vanishing of Ramanujan’s function \(\tau (n)\). Duke Math. J. 14, 429–433 (1947)

    Article  MathSciNet  Google Scholar 

  21. Luo, W., Ramakrishnan, D.: Determination of modular forms by twists of critical \(L\) -values. Invent. Math. 130, 371–398 (1997)

    Article  MathSciNet  Google Scholar 

  22. Luo, W.: Special \(L\)-values of Rankin-Selberg convolutions. Math. Ann. 314, 591–600 (1999)

    Article  MathSciNet  Google Scholar 

  23. Matomäki, K., Radziwiłł, M.: Sign changes of Hecke eigenvalues. Geom. Funct. Anal. 5(6), 1937–1955 (2015)

    Article  MathSciNet  Google Scholar 

  24. Matomäki, K.: On signs of Fourier coefficients of cusp forms. Math. Proc. Cambridge Philos. Soc. 152(2), 207–222 (2012)

    Article  MathSciNet  Google Scholar 

  25. Miyake, T.: Modular Forms. Springer Monographs in Mathematics. Springer-Verlag, Berlin (2006)

    MATH  Google Scholar 

  26. Moreno, C.J.: Analytic proof of the strong multiplicity one theorem. Am. J. Math. 107, 163–206 (1985)

    Article  MathSciNet  Google Scholar 

  27. Murty, M.R.: Oscillations of Fourier coefficients of modular forms. Math. Anna. 262(4), 431–446 (1983)

    Article  MathSciNet  Google Scholar 

  28. Murty, M.R., Murty, V.K.: Non-vanishing of L-functions and applications. Modern Birkhäuser Classics, Birkhäuser/Springer, Basel AG, Basel (1997)

    Book  Google Scholar 

  29. Murty, M.R., Murty, V.K.: Odd values of Fourier coefficients of certain modular forms. Int. J. Number Theory 3(3), 455–470 (2007)

    Article  MathSciNet  Google Scholar 

  30. Murty, M.R., Murty, V.K., Saradha, N.: Odd values of the Ramanujan tau function. Bull. Soc. Math. Fr. 115, 391–395 (1987)

    Article  Google Scholar 

  31. Murty, M.R., Pujahari, S.: Distinguishing Hecke eigenforms. Proc. Am. Math. Soc. 145(5), 1899–1904 (2017)

    Article  MathSciNet  Google Scholar 

  32. Ramakrishnan, D.: A refinement of the strong multiplicity one theorem for \(\rm {GL}(2)\). Appendix to: \(\ell \)-adic representations associated to modular forms over imaginary quadratic fields II by R. Taylor. Invent. Math. 116, 645–649 (1994)

    Article  MathSciNet  Google Scholar 

  33. Ramakrishnan, D.: Recovering modular forms from squares. Appendix to: a problem of Linnik for elliptic curves and mean-value estimates for automorphic representations by W. Duke and E. Kowalski. Invent. Math. 139, 1–39 (2000)

    Article  MathSciNet  Google Scholar 

  34. Ribet, K.A.: Galois representations attached to eigenforms with Nebentypus. In: Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), pp. 17–51. Lecture Notes in Math., vol. 601. Springer, Berlin (1977)

  35. Serre, J.P.: Modular forms of weight one and Galois representations. In: Algebraic Number Fields: \(L\)-Functions and Galois Properties. Proc. Sympos., Univ. Durham, Durham: Academic Press, London, vol. 1977, pp. 193–268 (1975)

  36. Serre, J.P.: Divisibilité de certaines fonctions arithmétiques. Enseign. Math. (2) 22(3–4), 227–260 (1976)

    MathSciNet  MATH  Google Scholar 

  37. Serre, J.P.: Quelques applications du théorème de densité de Chebotarev. Publ. Math. IHES 54, 323–401 (1981)

    Article  Google Scholar 

  38. Walji, N.: Further refinement of strong multiplicity one for \(\rm {GL}(2)\). Trans. AMS 366, 4987–5007 (2014)

    Article  MathSciNet  Google Scholar 

  39. Zeng, J., Yin, L.: On the computation of coefficients of modular forms: the reduction modulo \(p\) approach. Math. Comput. 84, 1469–1488 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Purusottam Rath and Ken Ribet for their suggestions which improved the exposition of the article. The first author would like to acknowledge MTR/2018/000201, SPARC project 445 and DAE number theory plan project for partial financial support. The third author is partially supported by JSPS KAKENHI Grant No. 19F19318 and would like to thank his host Professor Masanobu Kaneko for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanoli Gun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gun, S., Murty, V.K. & Paul, B. Distinguishing newforms by their Hecke eigenvalues. Res. number theory 7, 49 (2021). https://doi.org/10.1007/s40993-021-00277-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40993-021-00277-7

Keywords

Mathematics Subject Classification

Navigation