Skip to main content
Log in

Definitive screening design for mechanical properties enhancement in extrusion-based additive manufacturing of carbon fiber-reinforced PLA composite

  • Full Research Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

In the realm of material extrusion additive manufacturing, fused deposition modeling (FDM)/ fused filament fabrication (FFF) has gained widespread recognition for its cost-effective approach to producing engineering components with precise net-shapes. This study systematically investigates the influence of various FDM process parameters on the mechanical properties of printed parts of carbon fiber-reinforced poly-lactic acid (PLA-CF), specifically focusing on tensile strength (TS), flexural strength (FS), and impact strength (IS). Utilizing definitive screening design, nonlinear and quadratic regression models were developed to establish robust relationships between printing parameters and strength characteristics. Statistical evaluation confirmed the models’ efficacy in explaining observed variations and predicting responses. Contour plots further visually depicted the parameter impact on each strength aspect. For TS, FS and IS, crucial factors included layer height, followed by number of contours, infill density and fill angle. For multi-response optimization an integrated approach of grey relational analysis (GRA) and entropy were applied. Optimal parameter levels obtained were, a layer height of 0.1 mm, six contours, 50% infill density, 0° fill angle, 60 mm/s printing speed, 220 °C nozzle temperature, 90 °C bed temperature, and 0° part orientation. These parameters led to improved tensile strength (45.56 MPa), flexural strength (64.87 MPa), and impact strength (6.52 kJ/m2). This research provides important insights for enhancing FDM-printed part mechanical properties of PLA-CF and also offering a systematic methodology for process optimization and parameter selection in additive manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Raja S, John Rajan A (2023) Challenges and opportunities in additive manufacturing polymer technology: a review based on optimization perspective. Adv Polym Technol 2023:8639185. https://doi.org/10.1155/2023/8639185

    Article  Google Scholar 

  2. Mallikarjuna B, Bhargav P, Hiremath S et al (2023) A review on the melt extrusion-based fused deposition modeling (FDM): background, materials, process parameters and military applications. Int J Interact Des Manuf. https://doi.org/10.1007/s12008-023-01354-0

    Article  Google Scholar 

  3. Hussain G, Khan I (2018) Characteristics of friction stir processed UHMW polyethylene based composite. IOP Conf Ser Mater Sci Eng 301:12109. https://doi.org/10.1088/1757-899X/301/1/012109

    Article  Google Scholar 

  4. Farooq U, Khan I, Asif M et al (2020) Investigation on the effects of the processing parameters and the number of passes on the flexural properties of polymer nanocomposite fabricated through FSP method. Mater Res Express 7:55310

    Article  Google Scholar 

  5. Xu X, Ren H, Chen S et al (2023) Review on melt flow simulations for thermoplastics and their fiber reinforced composites in fused deposition modeling. J Manuf Process 92:272–286

    Article  Google Scholar 

  6. Yang Y, Yang B, Chang Z et al (2023) Research status of and prospects for 3D printing for continuous fiber-reinforced thermoplastic composites. Polymers (Basel) 15:3653

    Article  Google Scholar 

  7. León-Becerra J, Hidalgo-Salazar MÁ, González-Estrada OA (2023) Progressive damage analysis of carbon fiber-reinforced additive manufacturing composites. Int J Adv Manuf Technol 126:2617–2631. https://doi.org/10.1007/s00170-023-11256-w

    Article  Google Scholar 

  8. León-Becerra J, Hidalgo-Salazar MÁ, Correa-Aguirre JP et al (2024) Additive manufacturing of short carbon filled fiber nylon: effect of build orientation on surface roughness and viscoelastic behavior. Int J Adv Manuf Technol 130:425–435. https://doi.org/10.1007/s00170-023-12503-w

    Article  Google Scholar 

  9. Kumar NH, Adarsha H, Keshavamurthy R, Kapilan N (2023) Influence of carbon nano fibre addition on mechanical behaviour of PLA based 3D printed polymer nano composites. J Inst Eng Ser D. https://doi.org/10.1007/s40033-023-00455-0

    Article  Google Scholar 

  10. Basheer EPM, Rajkumar S, Karthikeyan R et al (2022) Microstructural characterization and defects analysis of FDM based composite material (PLA-G-CF). Mater Today Proc 62:2303–2309. https://doi.org/10.1016/j.matpr.2022.04.095

    Article  Google Scholar 

  11. Tian X, Liu T, Wang Q et al (2017) Recycling and remanufacturing of 3D printed continuous carbon fiber reinforced PLA composites. J Clean Prod 142:1609–1618

    Article  Google Scholar 

  12. Heidari-Rarani M, Rafiee-Afarani M, Zahedi AM (2019) Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites. Compos Part B Eng 175:107147

    Article  Google Scholar 

  13. Maqsood N, Rimašauskas M (2021) Characterization of carbon fiber reinforced PLA composites manufactured by fused deposition modeling. Compos Part C Open Access 4:100112. https://doi.org/10.1016/j.jcomc.2021.100112

    Article  Google Scholar 

  14. Moradi M, KaramiMoghadam M, Shamsborhan M, Bodaghi M (2020) The synergic effects of FDM 3D printing parameters on mechanical behaviors of bronze poly lactic acid composites. J Compos Sci 4:17

    Article  Google Scholar 

  15. Ansari AA, Kamil M (2022) Izod impact and hardness properties of 3D printed lightweight CF-reinforced PLA composites using design of experiment. Int J Light Mater Manuf 5:369–383. https://doi.org/10.1016/j.ijlmm.2022.04.006

    Article  Google Scholar 

  16. Liu Z, Lei Q, Xing S (2019) Mechanical characteristics of wood, ceramic, metal and carbon fiber-based PLA composites fabricated by FDM. J Mater Res Technol 8:3741–3751. https://doi.org/10.1016/j.jmrt.2019.06.034

    Article  Google Scholar 

  17. Yang L, Li S, Zhou X et al (2019) Effects of carbon nanotube on the thermal, mechanical, and electrical properties of PLA/CNT printed parts in the FDM process. Synth Met 253:122–130. https://doi.org/10.1016/j.synthmet.2019.05.008

    Article  Google Scholar 

  18. Venkateswar Reddy M, Hemasunder B, MahadevapaChavan P et al (2023) Study on the significance of process parameters in improvising the tensile strength of FDM printed carbon fibre reinforced PLA. Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.06.330

    Article  Google Scholar 

  19. Khalili A, Kami A, Abedini V (2023) Tensile and Flexural Properties of 3D-Printed Polylactic Acid/Continuous Carbon Fiber Composite. Mech Adv Compos Struct 10:407–418. https://doi.org/10.22075/macs.2023.29500.1466

    Article  Google Scholar 

  20. Thakur V, Kumar R, Kumar R et al (2023) Hybrid additive manufacturing of highly sustainable polylactic acid -carbon fiber-polylactic acid sandwiched composite structures: optimization and machine learning. J Thermoplast Compos Mater. https://doi.org/10.1177/08927057231180186

    Article  Google Scholar 

  21. Saleh M, Anwar S, Al-Ahmari AM, AlFaify AY (2023) Prediction of mechanical properties for carbon fiber/PLA composite lattice structures using mathematical and ANFIS models. Polymers (Basel) 15:1720

    Article  Google Scholar 

  22. Cao M, Cui T, Yue Y et al (2022) Investigation of carbon fiber on the tensile property of FDM-produced PLA specimen. Polymers (Basel) 14:5230

    Article  Google Scholar 

  23. Singh J, Goyal KK, Sharma R (2023) Impact of FDM variables on the tensile property of 3D printed CF-PLA parts. Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.07.226

    Article  Google Scholar 

  24. Ding Q, Li X, Zhang D et al (2020) Anisotropy of poly (lactic acid)/carbon fiber composites prepared by fused deposition modeling. J Appl Polym Sci 137:48786

    Article  Google Scholar 

  25. Julong D (1989) Introduction to grey system theory. J grey Syst 1:1–24

    MathSciNet  Google Scholar 

  26. Chakraborty S, Datta HN, Chakraborty S (2023) Grey relational analysis-based optimization of machining processes: a comprehensive review. Process Integr Optim Sustain 7(4):609–639

    Article  Google Scholar 

  27. Acır A, Canlı ME, Ata İ, Çakıroğlu R (2017) Parametric optimization of energy and exergy analyses of a novel solar air heater with grey relational analysis. Appl Therm Eng 122:330–338

    Article  Google Scholar 

  28. Rajeswari B, Amirthagadeswaran KS (2017) Experimental investigation of machinability characteristics and multi-response optimization of end milling in aluminium composites using RSM based grey relational analysis. Measurement 105:78–86

    Article  Google Scholar 

  29. Akgül V, Kurşuncu B, Kaya H (2023) Response surface methodology-based multi-objective grey relation optimization for impinging jet cooling with Al2O3/water nanofluid on a curved surface. Neural Comput Appl 35:13999–14012

    Article  Google Scholar 

  30. ePLA-CF. https://www.esun3d.com/epla-cf-product/. Accessed 10 Mar 2023

  31. ASTM E23; Standard Test Methods for Notched Bar Impact Testing of Metallic Materials. In: ASTM Int. West Conshohocken, PA, USA. https://www.astm.org/standards/e23. Accessed 10 Jun 2023

  32. ASTM D638–14; Standard Test Method for Tensile Properties of Plastics. In: ASTM Int. West Conshohocken, PA, USA. https://www.astm.org/d0638-14.html. Accessed 10 Jun 2023

  33. ASTM D790-17; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. In: ASTM Int. West Conshohocken, PA, USA. https://www.astm.org/d0790-17.html. Accessed 10 Jun 2023

  34. Saharudin MS, Hajnys J, Kozior T et al (2021) Quality of surface texture and mechanical properties of PLA and PA-based material reinforced with carbon fibers manufactured by FDM and CFF 3D printing technologies. Polymers (Basel) 13:1671

    Article  Google Scholar 

  35. Chaudhry FN, Butt SI, Mubashar A et al (2019) Effect of carbon fibre on reinforcement of thermoplastics using FDM and RSM. J Thermoplast Compos Mater 35:352–374. https://doi.org/10.1177/0892705719886891

    Article  Google Scholar 

  36. El MA, El Mabrouk K, Vaudreuil S, Touhami ME (2019) Mechanical properties of CF-reinforced PLA parts manufactured by fused deposition modeling. J Thermoplast Compos Mater 34:581–595. https://doi.org/10.1177/0892705719847244

    Article  Google Scholar 

  37. Fountas NA, Zaoutsos S, Chaidas D et al (2023) Statistical modelling and optimization of mechanical properties for PLA and PLA/Wood FDM materials. Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.08.276

    Article  Google Scholar 

  38. Abas M, Al AM, Habib T, Noor S (2023) Analyzing surface roughness variations in material extrusion additive manufacturing of nylon carbon fiber composites. Polymers (Basel) 15:3633

    Article  Google Scholar 

  39. Abas M, Habib T, Noor S, Khan KM (2022) Comparative study of I-optimal design and definitive screening design for developing prediction models and optimization of average surface roughness of PLA printed parts using fused deposition modeling. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-022-10784-1

    Article  Google Scholar 

  40. Ali S, Abdallah S, Devjani DH et al (2022) Effect of build parameters and strain rate on mechanical properties of 3D printed PLA using DIC and desirability function analysis. Rapid Prototyp J 29:92–111

    Article  Google Scholar 

  41. Jan Z, Abas M, Khan I et al (2023) Design and analysis of wrist hand orthosis for carpal tunnel syndrome using additive manufacturing. J Eng Res. https://doi.org/10.1016/j.jer.2023.12.001

    Article  Google Scholar 

  42. Kuznetsov VE, Solonin AN, Urzhumtsev OD et al (2018) Strength of PLA components fabricated with fused deposition technology using a desktop 3D printer as a function of geometrical parameters of the process. Polymers (Basel) 10:313

    Article  Google Scholar 

  43. Ambade V, Rajurkar S, Awari G et al (2023) Influence of FDM process parameters on tensile strength of parts printed by PLA material. Int J Interact Des Manuf. https://doi.org/10.1007/s12008-023-01490-7

    Article  Google Scholar 

  44. Rasheed A, Hussain M, Ullah S et al (2023) Experimental investigation and Taguchi optimization of FDM process parameters for the enhancement of tensile properties of Bi-layered printed PLA-ABS. Mater Res Express 10:95307

    Article  Google Scholar 

  45. Jones B, Nachtsheim CJ (2011) A class of three-level designs for definitive screening in the presence of second-order effects. J Qual Technol 43:1–15

    Article  Google Scholar 

  46. Jones B, Nachtsheim CJ (2017) Effective design-based model selection for definitive screening designs. Technometrics 59:319–329

    Article  MathSciNet  Google Scholar 

  47. Abas M, Habib T, Noor S et al (2022) Parametric investigation and optimization to study the effect of process parameters on the dimensional deviation of fused deposition modeling of 3D printed parts. Polymers (Basel) 14:3667

    Article  Google Scholar 

  48. Luzanin O, Guduric V, Ristic I, Muhic S (2017) Investigating impact of five build parameters on the maximum flexural force in FDM specimens: a definitive screening design approach. Rapid Prototyp J 23:1088–1098. https://doi.org/10.1108/RPJ-09-2015-0116

    Article  Google Scholar 

  49. Mohamed OA, Masood SH, Bhowmik JL (2017) Influence of processing parameters on creep and recovery behavior of FDM manufactured part using definitive screening design and ANN. Rapid Prototyp J 23:998–1010. https://doi.org/10.1108/RPJ-12-2015-0198

    Article  Google Scholar 

  50. Mohamed OA, Masood SH, Bhowmik JL (2021) Modeling, analysis, and optimization of dimensional accuracy of FDM-fabricated parts using definitive screening design and deep learning feedforward artificial neural network. Adv Manuf 9:115–129

    Article  Google Scholar 

  51. Afzal MS, Wakeel A, Nasir MA et al (2024) Optimization of process parameters for shielded metal arc welding for ASTM A 572 grade 50. J Eng Res. https://doi.org/10.1016/j.jer.2024.01.005

    Article  Google Scholar 

  52. Khan MU, Abas M, Noor S et al (2021) Experimental and statistical analysis of saw mill wood waste composite properties for practical applications. Polymers (Basel) 13:4038

    Article  Google Scholar 

  53. Hwang C-L, Yoon K (1981) Methods for multiple attribute decision making. In: Hwang C-L, Yoon K (eds) Multiple attribute decision making: methods and applications a state-of-the-art survey. Springer, Berlin, Heidelberg, pp 58–191

    Chapter  Google Scholar 

  54. Cao D (2023) Enhanced buckling strength of the thin-walled continuous carbon fiber–reinforced thermoplastic composite through dual coaxial nozzles material extrusion process. Int J Adv Manuf Technol 128:1305–1315. https://doi.org/10.1007/s00170-023-12014-8

    Article  Google Scholar 

  55. Kumar K, Singh H (2023) Multi-objective optimization of fused deposition modeling for mechanical properties of biopolymer parts using the grey-Taguchi method. Chin J Mech Eng 36:30. https://doi.org/10.1186/s10033-023-00847-z

    Article  Google Scholar 

  56. Zonoobi MA, HaghshenasGorgani H, Javaherneshan D (2023) Experimental investigation and multi-objective optimization of FDM process parameters for mechanical strength, dimensional accuracy, and cost using a hybrid algorithm. Sci Iran. https://doi.org/10.24200/sci.2023.60960.7090

    Article  Google Scholar 

  57. Chokshi H, Shah DB, Patel KM, Joshi SJ (2022) Experimental investigations of process parameters on mechanical properties for PLA during processing in FDM. Adv Mater Process Technol 8:696–709. https://doi.org/10.1080/2374068X.2021.1946756

    Article  Google Scholar 

  58. Tanveer MQ, Haleem A, Suhaib M (2019) Effect of variable infill density on mechanical behaviour of 3-D printed PLA specimen: an experimental investigation. SN Appl Sci 1:1701. https://doi.org/10.1007/s42452-019-1744-1

    Article  Google Scholar 

  59. Mohamed OA, Masood SH, Bhowmik JL (2016) Experimental investigations of process parameters influence on rheological behavior and dynamic mechanical properties of FDM manufactured parts. Mater Manuf Process 31:1983–1994. https://doi.org/10.1080/10426914.2015.1127955

    Article  Google Scholar 

  60. Taborda-Ríos JA, López-Botello O, Zambrano-Robledo P et al (2020) Mechanical characterisation of a bamboo fibre/polylactic acid composite produced by fused deposition modelling. J Reinf Plast Compos 39:932–944. https://doi.org/10.1177/0731684420938434

    Article  Google Scholar 

  61. Dave HK, Prajapati AR, Rajpurohit SR et al (2022) Investigation on tensile strength and failure modes of FDM printed part using in-house fabricated PLA filament. Adv Mater Process Technol 8:576–597. https://doi.org/10.1080/2374068X.2020.1829951

    Article  Google Scholar 

  62. Rajpurohit SR, Dave HK (2019) Analysis of tensile strength of a fused filament fabricated PLA part using an open-source 3D printer. Int J Adv Manuf Technol 101:1525–1536

    Article  Google Scholar 

  63. Muhamedagic K, Berus L, Potočnik D et al (2022) Effect of process parameters on tensile strength of FDM printed carbon fiber reinforced polyamide parts. Appl Sci 12:6028

    Article  Google Scholar 

  64. Mahmoud Y, Lyu J, Akhavan J et al (2023) Thermal history based prediction of interlayer bond strength in parts manufactured by material extrusion additive manufacturing. Int J Adv Manuf Technol 126:3813–3829. https://doi.org/10.1007/s00170-023-11364-7

    Article  Google Scholar 

  65. Croccolo D, De Agostinis M, Fini S et al (2023) Effects of infill temperature on the tensile properties and warping of 3D-printed polylactic acid. Prog Addit Manuf. https://doi.org/10.1007/s40964-023-00492-x

    Article  Google Scholar 

  66. Benwood C, Anstey A, Andrzejewski J et al (2018) Improving the impact strength and heat resistance of 3D printed models: structure, property, and processing correlationships during fused deposition modeling (FDM) of poly (lactic acid). ACS Omega 3:4400–4411

    Article  Google Scholar 

  67. Adrover-Monserrat B, García-Vilana S, Sánchez-Molina D et al (2023) Impact of printing orientation on inter and intra-layer bonds in 3D printed thermoplastic elastomers: a study using acoustic emission and tensile tests. Polymer (Guildf) 283:126241. https://doi.org/10.1016/j.polymer.2023.126241

    Article  Google Scholar 

  68. Yaman P, Ekşi O, Karabeyoğlu SS, Feratoğlu K (2023) Effect of build orientation on tribological and flexural properties of FDM-printed composite PLA parts. J Reinf Plast Compos. https://doi.org/10.1177/07316844231157790

    Article  Google Scholar 

  69. de Prada RE, Bossio GR, Bruno MM (2023) Effect of FDM printing patterns on mechanical properties of ABS. Rapid Prototyp J. https://doi.org/10.1108/RPJ-04-2023-0130

    Article  Google Scholar 

  70. Vaes D, Van Puyvelde P (2021) Semi-crystalline feedstock for filament-based 3D printing of polymers. Prog Polym Sci 118:101411. https://doi.org/10.1016/j.progpolymsci.2021.101411

    Article  Google Scholar 

  71. Goh GD, Yap YL, Agarwala S, Yeong WY (2019) Recent progress in additive manufacturing of fiber reinforced polymer composite. Adv Mater Technol 4:1800271. https://doi.org/10.1002/admt.201800271

    Article  Google Scholar 

  72. Mishra SB, Malik R, Mahapatra SS (2017) Effect of external perimeter on flexural strength of FDM build parts. Arab J Sci Eng 42:4587–4595. https://doi.org/10.1007/s13369-017-2598-8

    Article  Google Scholar 

  73. Gebisa AW, Lemu HG (2018) Investigating effects of fused-deposition modeling (FDM) processing parameters on flexural properties of ULTEM 9085 using designed experiment. Materials (Basel) 11:500

    Article  Google Scholar 

  74. Xu W, Jambhulkar S, Zhu Y et al (2021) 3D printing for polymer/particle-based processing: a review. Compos Part B Eng 223:109102. https://doi.org/10.1016/j.compositesb.2021.109102

    Article  Google Scholar 

  75. Pagés-Llobet A, Espinach FX, Julián F et al (2023) Effect of extruder type in the interface of PLA layers in FDM printers: filament extruder versus direct pellet extruder. Polymers (Basel) 15:2019

    Article  Google Scholar 

  76. Spoerk M, Gonzalez-Gutierrez J, Sapkota J et al (2018) Effect of the printing bed temperature on the adhesion of parts produced by fused filament fabrication. Plast Rubber Compos 47:17–24

    Article  Google Scholar 

  77. Kamaal M, Anas M, Rastogi H et al (2021) Effect of FDM process parameters on mechanical properties of 3D-printed carbon fibre–PLA composite. Prog Addit Manuf 6:63–69

    Article  Google Scholar 

  78. Wang L, Gramlich WM, Gardner DJ (2017) Improving the impact strength of Poly(lactic acid) (PLA) in fused layer modeling (FLM). Polymer (Guildf) 114:242–248. https://doi.org/10.1016/j.polymer.2017.03.011

    Article  Google Scholar 

  79. Doshi M, Mahale A, Singh SK, Deshmukh S (2022) Printing parameters and materials affecting mechanical properties of FDM-3D printed Parts: perspective and prospects. Mater Today Proc 50:2269–2275

    Article  Google Scholar 

  80. Sardinha M, Vicente CMS, Frutuoso N et al (2021) Effect of the ironing process on ABS parts produced by FDM. Mater Des Process Commun 3:e151. https://doi.org/10.1002/mdp2.151

    Article  Google Scholar 

  81. Patadiya NH, Dave HK, Rajpurohit SR (2020) Effect of build orientation on mechanical strength of FDM printed PLA. In: Shunmugam MS, Kanthababu M (eds) Advances in additive manufacturing and joining. Springer, Singapore, pp 301–307

    Google Scholar 

  82. Pazhamannil RV, Govindan P, Edacherian A, Hadidi HM (2022) Impact of process parameters and heat treatment on fused filament fabricated PLA and PLA-CF. Int J Interact Des Manuf. https://doi.org/10.1007/s12008-022-01082-x

    Article  Google Scholar 

  83. Ajay Kumar M, Khan MS, Mishra SB (2020) Effect of fused deposition machine parameters on tensile strength of printed carbon fiber reinforced PLA thermoplastics. Mater Today Proc 27:1505–1510. https://doi.org/10.1016/j.matpr.2020.03.033

    Article  Google Scholar 

  84. Li Y, Gao S, Dong R et al (2018) Additive manufacturing of PLA and CF/PLA binding layer specimens via fused deposition modeling. J Mater Eng Perform 27:492–500. https://doi.org/10.1007/s11665-017-3065-0

    Article  Google Scholar 

  85. Arunkumar N, Sathishkumar N, Sanmugapriya SS, Selvam R (2021) Study on PLA and PA thermoplastic polymers reinforced with carbon additives by 3D printing process. Mater Today Proc 46:8871–8879. https://doi.org/10.1016/j.matpr.2021.05.041

    Article  Google Scholar 

  86. Patterson AE, Pereira TR, Allison JT, Messimer SL (2021) IZOD impact properties of full-density fused deposition modeling polymer materials with respect to raster angle and print orientation. Proc Inst Mech Eng Part C J Mech Eng Sci 235:1891–1908

    Article  Google Scholar 

Download references

Funding

This work was supported by Pakistan Science Foundation with project funding (Grant numbers PSF/CRP/KPK-UET/T-Helix (126)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Abas.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abas, M., Habib, T., Khan, I. et al. Definitive screening design for mechanical properties enhancement in extrusion-based additive manufacturing of carbon fiber-reinforced PLA composite. Prog Addit Manuf (2024). https://doi.org/10.1007/s40964-024-00610-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40964-024-00610-3

Keywords

Navigation