Skip to main content
Log in

Surface topology as non-destructive proxy for tensile strength of plastic parts from filament-based material extrusion

  • Full Research Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

Non-destructive characterization of 3D-printed parts is critical for quality control and adoption of additive manufacturing (AM). The low-cost driver for AM of thermoplastics, typically through material extrusion AM (MEAM), challenges the integration of real-time, operando characterization and control schemes that have been developed for metals. Here, we demonstrate that the surface topology determined from optical profilometry provides information about the mechanical response of the printed part using commercial ABS filaments through calibration-based correlations. The influence of layer thickness on the tensile properties of MEAM ABS was examined. Surface topology was converted into amplitude spectra using fast Fourier transforms. The scatter in the tensile strength of the replicate samples was well represented by the differences in the amplitude of the two fundamental waves that describe the periodicity of the printed roads. These results suggest that information about previously printed layers is transferred to subsequent layers that can be resolved from optical profilometry and offers the potential of a rapid, non-destructive post-print characterization for improved quality control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request. Source data are provided with this paper.

5. References

  1. Garcia-Dominguez A, Claver J, Sebastian MA (2020) Optimization methodology for additive manufacturing of customized parts by fused deposition modeling (FDM). Appl Shoe Heel Polym 12:2119. https://doi.org/10.3390/polym12092119

    Article  Google Scholar 

  2. Tofail SAM, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C (2018) Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today 21:22–37. https://doi.org/10.1016/j.mattod.2017.07.001

    Article  Google Scholar 

  3. Zeltmann SE, Gupta N, Tsoutsos NG, Maniatakos M, Rajendran J, Karri R (2016) Manufacturing and security challenges in 3D printing. JOM 68:1872–1881. https://doi.org/10.1007/s11837-016-1937-7

    Article  Google Scholar 

  4. Kumar S, Czekanski A (2018) Roadmap to sustainable plastic additive manufacturing. Mater Today Commun 15:109–113. https://doi.org/10.1016/j.mtcomm.2018.02.006

    Article  Google Scholar 

  5. Ma JF, Harstvedt JD, Dunaway D, Bian LK, Jaradat R (2018) An exploratory investigation of additively manufactured product life cycle sustainability assessment. J Clean Prod 192:55–70. https://doi.org/10.1016/j.jclepro.2018.04.249

    Article  Google Scholar 

  6. Pascu NE, Arion AF, Dobrescu T, Carutasu NL (2015) Fused deposition modeling design rules for plastics. Mater Plast 52:141–143

    Google Scholar 

  7. Cano-Vicent A, Tambuwala MM, Hassan SS, Barh D, Aljabali AAA, Birkett M, Arjunan A, Serrano-Aroca A (2021) Fused deposition modelling: current status, methodology, applications and future prospects. Addit Manuf 47:102378. https://doi.org/10.1016/j.addma.2021.102378

    Article  Google Scholar 

  8. Turner BN, Gold SA (2015) A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyp J 21:250–261. https://doi.org/10.1108/rpj-02-2013-0017

    Article  Google Scholar 

  9. Durgun I, Ertan R (2014) Experimental investigation of FDM process for improvement of mechanical properties and production cost. Rapid Prototyp J 20:228–235. https://doi.org/10.1108/rpj-10-2012-0091

    Article  Google Scholar 

  10. Chohan JS, Mittal N, Kumar R, Singh S, Sharma S, Singh J, Rao KV, Mia M, Pimenov DY, Dwivedi SP (2020) Mechanical strength enhancement of 3D printed acrylonitrile butadiene styrene polymer components using neural network optimization algorithm. Polymers 12:2250. https://doi.org/10.3390/polym12102250

    Article  Google Scholar 

  11. Mohamed OA, Masood SH, Bhowmik JL (2015) Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv Manuf 3:42–53. https://doi.org/10.1007/s40436-014-0097-7

    Article  Google Scholar 

  12. Spoerk M, Arbeiter F, Cajner H, Sapkota J, Holzer C (2017) Parametric optimization of intra- and inter-layer strengths in parts produced by extrusion-based additive manufacturing of poly(lactic acid). J Appl Polym Sci 134:45401. https://doi.org/10.1002/app.45401

    Article  Google Scholar 

  13. Street DP, Ledford WK, Allison AA, Patterson S, Pickel DL, Lokitz BS, Messman JM, Kilbey SM (2019) Self-complementary multiple hydrogen-bonding additives enhance thermomechanical properties of 3D-printed PMMA structures. Macromolecules 52:5574–5582. https://doi.org/10.1021/acs.macromol.9b00546

    Article  Google Scholar 

  14. Perryman SC, Dadmun MD (2021) Incorporating crosslinks in fused filament fabrication: molecular insight into post deposition reactions. Addit Manuf 38:101746. https://doi.org/10.1016/j.addma.2020.101746

    Article  Google Scholar 

  15. Valino AD, Dizon JRC, Espera AH, Chen QY, Messman J, Advincula RC (2019) Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Prog Polym Sci 98:101162. https://doi.org/10.1016/j.progpolymsci.2019.101162

    Article  Google Scholar 

  16. D’Amico T, Peterson AM (2020) Bead parameterization of desktop and room-scale material extrusion additive manufacturing: how print speed and thermal properties affect heat transfer. Addit Manuf 34:101239. https://doi.org/10.1016/j.addma.2020.101239

    Article  Google Scholar 

  17. Wang P, Zou B, Ding SL (2019) Modeling of surface roughness based on heat transfer considering diffusion among deposition filaments for FDM 3D printing heat-resistant resin. Appl Therm Eng 161:114064. https://doi.org/10.1016/j.applthermaleng.2019.114064

    Article  Google Scholar 

  18. Van de Voorde B, Katalagarianakis A, Huysman S, Toncheva A, Raquez JM, Duretek I, Holzer C, Cardon L, Bernaerts KV, Van Hemelrijck D et al (2022) Effect of extrusion and fused filament fabrication processing parameters of recycled poly(ethylene terephthalate) on the crystallinity and mechanical properties. Addit Manuf 50:102518. https://doi.org/10.1016/j.addma.2021.102518

    Article  Google Scholar 

  19. El Magri A, El Mabrouk K, Vaudreuil S, Chibane H, Touhami ME (2020) Optimization of printing parameters for improvement of mechanical and thermal performances of 3D printed poly(ether ether ketone) parts. J Appl Polym Sci 137:49087. https://doi.org/10.1002/app.49087

    Article  Google Scholar 

  20. Farzadi A, Solati-Hashjin M, Asadi-Eydivand M, Abu Osman NA (2014) Effect of layer thickness and printing orientation on mechanical properties and dimensional accuracy of 3D printed porous samples for bone tissue engineering. PLoS ONE 9(9):e108252. https://doi.org/10.1371/journal.pone.0108252

    Article  Google Scholar 

  21. Laureto JJ, Pearce JM (2018) Anisotropic mechanical property variance between ASTM D638–14 type i and type iv fused filament fabricated specimens. Polym Test 68:294–301. https://doi.org/10.1016/j.polymertesting.2018.04.029

    Article  Google Scholar 

  22. Ponsar H, Wiedey R, Quodbach J (2020) Hot-melt extrusion process fluctuations and their impact on critical quality attributes of filaments and 3D-printed dosage forms. Pharmaceutics 12:511. https://doi.org/10.3390/pharmaceutics12060511

    Article  Google Scholar 

  23. Koker B, Ruckdashel R, Abajorga H, Curcuru N, Pugatch M, Dunn R, Kazmer DO, Wetzel ED, Park JH (2022) Enhanced interlayer strength and thermal stability via dual material filament for material extrusion additive manufacturing. Addit Manuf 55:102807. https://doi.org/10.1016/j.addma.2022.102807

    Article  Google Scholar 

  24. Coogan TJ, Kazmer DO (2019) Modeling of interlayer contact and contact pressure during fused filament fabrication. J Rheol 63:655–672. https://doi.org/10.1122/1.5093033

    Article  Google Scholar 

  25. Anderegg DA, Bryant HA, Ruffin DC, Skrip SM, Fallon JJ, Gilmer EL, Bortner MJ (2019) In-situ monitoring of polymer flow temperature and pressure in extrusion based additive manufacturing. Addit Manuf 26:76–83. https://doi.org/10.1016/j.addma.2019.01.002

    Article  Google Scholar 

  26. Agassant JF, Pigeonneau F, Sardo L, Vincent M (2019) Flow analysis of the polymer spreading during extrusion additive manufacturing. Addit Manuf 29:100794. https://doi.org/10.1016/j.addma.2019.100794

    Article  Google Scholar 

  27. McIlroy C, Olmsted PD (2017) Deformation of an amorphous polymer during the fused-filament-fabrication method for additive manufacturing. J Rheol 61:379–397. https://doi.org/10.1122/1.4976839

    Article  Google Scholar 

  28. Monzon MD, Gibson I, Benitez AN, Lorenzo L, Hernandez PM, Marrero MD (2013) Process and material behavior modeling for a new design of micro-additive fused deposition. Int J Adv Manuf Technol 67:2717–2726. https://doi.org/10.1007/s00170-012-4686-y

    Article  Google Scholar 

  29. Das A, Gilmer EL, Biria S, Bortner MJ (2021) Importance of polymer rheology on materials extrusion additive manufacturing: correlating process physics to print properties. ACS Appl Polym Mater 3:1218–1249. https://doi.org/10.1021/acsapm.0c01228

    Article  Google Scholar 

  30. Comminal R, Serdeczny MP, Pedersen DB, Spangenberg J (2019) Motion planning and numerical simulation of material deposition at corners in extrusion additive manufacturing. Addit Manuf 29:100753. https://doi.org/10.1016/j.addma.2019.06.005

    Article  Google Scholar 

  31. Costanzo A, Spotorno R, Candal MV, Fernandez MM, Mueller AJ, Graham RS, Cavallo D, McIlroy C (2020) Residual alignment and its effect on weld strength in material-extrusion 3D-printing of polylactic acid. Addit Manuf 36:101415. https://doi.org/10.1016/j.addma.2020.101415

    Article  Google Scholar 

  32. Gilmer EL, Miller D, Chatham CA, Zawaski C, Fallon JJ, Pekkanen A, Long TE, Williams CB, Bortner MJ (2018) Model analysis of feedstock behavior in fused filament fabrication: enabling rapid materials screening. Polymer 152:51–61. https://doi.org/10.1016/j.polymer.2017.11.068

    Article  Google Scholar 

  33. Samy AA, Golbang A, Harkin-Jones E, Archer E, McIlhagger A (2021) Prediction of part distortion in Fused Deposition Modelling (FDM) of semi-crystalline polymers via COMSOL: effect of printing conditions. CIRP J Manuf Sci Technol 33:443–453. https://doi.org/10.1016/j.cirpj.2021.04.012

    Article  Google Scholar 

  34. Romano S, Brandao A, Gumpinger J, Gschweitl M, Beretta S (2017) Qualification of AM parts: extreme value statistics applied to tomographic measurements. Mater Des 131:32–48. https://doi.org/10.1016/j.matdes.2017.05.091

    Article  Google Scholar 

  35. Cummings I, Hillstrom E, Newton R, Flynn E, Wachtor A (2016) In-process ultrasonic inspection of additive manufactured parts. In: 34th IMAC conference and exposition on structural dynamics, Orlando, FL, Jan 25–28, pp 235–247. https://doi.org/10.1007/978-3-319-30249-2_20

  36. AbouelNour Y, Gupta N (2022) In-situ monitoring of sub-surface and internal defects in additive manufacturing: a review. Mater Des 222:111063. https://doi.org/10.1016/j.matdes.2022.111063

    Article  Google Scholar 

  37. Chen Y, Peng X, Kong LB, Dong GX, Remani A, Leach R (2021) Defect inspection technologies for additive manufacturing. Int J Extreme Manuf 3:022002. https://doi.org/10.1088/2631-7990/abe0d0

    Article  Google Scholar 

  38. Cerniglia D, Scafidi M, Pantano A, Rudlin J (2015) Inspection of additive-manufactured layered components. Ultrasonics 62:292–298. https://doi.org/10.1016/j.ultras.2015.06.001

    Article  Google Scholar 

  39. Metel AS, Tarasova T, Skorobogatov A, Podrabinnik P, Volosova M, Grigoriev SN (2023) Quality diagnostics of parts produced by combined additive manufacturing technology. Metals 13:19. https://doi.org/10.3390/met13010019

    Article  Google Scholar 

  40. Liu RS, Vogt BD, Yang H (2021) Gaussian process monitoring of layerwise-dependent imaging data. IEEE Robot Autom Lett 6:8029–8036. https://doi.org/10.1109/lra.2021.3102625

    Article  Google Scholar 

  41. Sun XC, Mazur M, Cheng CT (2023) A review of void reduction strategies in material extrusion-based additive manufacturing. Addit Manuf 67:103463. https://doi.org/10.1016/j.addma.2023.103463

    Article  Google Scholar 

  42. Liu CX, Yang CL, Liu J, Tang YJ, Lin ZJ, Li L, Liang H, Lu WJ, Wang LQ (2023) Error assessment and correction for extrusion-based bioprinting using computer vision method. Int J Bioprint 9:299–308. https://doi.org/10.18063/ijb.v9i1.644

    Article  Google Scholar 

  43. Wichniarek R, Hamrol A, Kuczko W, Gorski F, Rogalewicz M (2021) ABS filament moisture compensation possibilities in the FDM process. CIRP J Manuf Sci Technol 35:550–559. https://doi.org/10.1016/j.cirpj.2021.08.011

    Article  Google Scholar 

  44. Ai JR, Vogt BD (2022) Size and print path effects on mechanical properties of material extrusion 3D printed plastics. Progress Addit Manuf 7:1009–1021. https://doi.org/10.1007/s40964-022-00275-w

    Article  Google Scholar 

  45. Zhang YK, Shen SN, Li H, Hu YW (2022) Review of in situ and real-time monitoring of metal additive manufacturing based on image processing. Int J Adv Manuf Technol 123:1–20. https://doi.org/10.1007/s00170-022-10178-3

    Article  Google Scholar 

  46. Mahato V, Obeidi MA, Brabazon D, Cunningham P (2022) Detecting voids in 3D printing using melt pool time series data. J Intell Manuf 33:845–852. https://doi.org/10.1007/s10845-020-01694-8

    Article  Google Scholar 

  47. Gasior M, Gonzalez JL (2004) Improving FFT frequency measurement resolution by parabolic and Gaussian spectrum interpolation. In: 11th Beam instrumentation workshop, spallat neutron source, Knoxville, TN, May 03–06, 2004; pp 276–285

  48. Franchetti F, Karner H, Kral S, Ueberhuber CW (2001) Architecture independent short vector FFTs. In: IEEE international conference on acoustics, speech, and signal processing, Salt Lake City, UT, May 07–11, 2001, pp 1109–1112

  49. Kakanuru P, Pochiraju K (2020) Moisture ingress and degradation of additively manufactured PLA, ABS and PLA/SiC composite parts. Addit Manuf 36:101529. https://doi.org/10.1016/j.addma.2020.101529

    Article  Google Scholar 

  50. Striemann P, Huelsbusch D, Niedermeier M, Walther F (2021) Application-oriented assessment of the interlayer tensile strength of additively manufactured polymers. Addit Manuf 46:102095. https://doi.org/10.1016/j.addma.2021.102095

    Article  Google Scholar 

  51. Zaldivar RJ, Witkin DB, McLouth T, Patel DN, Schmitt K, Nokes JP (2017) Influence of processing and orientation print effects on the mechanical and thermal behavior of 3D-Printed ULTEM (R) 9085 Material. Addit Manuf 13:71–80. https://doi.org/10.1016/j.addma.2016.11.007

    Article  Google Scholar 

  52. Fleming TG, Nestor SGL, Allen TR, Boukhaled MA, Smith NJ, Fraser JM (2020) Tracking and controlling the morphology evolution of 3D powder-bed fusion in situ using inline coherent imaging. Addit Manuf 32:1009178. https://doi.org/10.1016/j.addma.2019.100978

    Article  Google Scholar 

  53. Zhou Y, Ghim YS, Fard A, Davies A (2013) Application of the random ball test for calibrating slope-dependent errors in profilometry measurements. Appl Opt 52:5925–5931. https://doi.org/10.1364/ao.52.005925

    Article  Google Scholar 

  54. Henriques JF, Caseiro R, Martins P, Batista J (2015) High-speed tracking with kernelized correlation filters. IEEE Trans Pattern Anal Mach Intell 37:583–596. https://doi.org/10.1109/TPAMI.2014.2345390

    Article  Google Scholar 

  55. Wang YL, Yang JF, Yin WT, Zhang Y (2008) A new alternating minimization algorithm for total variation image reconstruction. SIAM J Imag Sci 1:248–272. https://doi.org/10.1137/08072426

    Article  MathSciNet  MATH  Google Scholar 

  56. Lehmann TM, Gonner C, Spitzer K (1999) Survey: interpolation methods in medical image processing. IEEE Trans Med Imaging 18:1049–1075. https://doi.org/10.1109/42.816070

    Article  Google Scholar 

  57. Zhu L, Cheng SZD, Calhoun BH, Ge Q, Quirk RP, Thomas EL, Hsiao BS, Yeh FJ, Lotz B (2000) Crystallization temperature-dependent crystal orientations within nanoscale confined lamellae of a self-assembled crystalline-amorphous diblock copolymer. J Am Chem Soc 122:5957–5967. https://doi.org/10.1021/ja000275e

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Science Foundation under Grant no. CMMI-2011289. The authors acknowledge use of the Penn State Materials Characterization Lab for tensile measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan D. Vogt.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 10752 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harbinson, B., Yost, S.F. & Vogt, B.D. Surface topology as non-destructive proxy for tensile strength of plastic parts from filament-based material extrusion. Prog Addit Manuf (2023). https://doi.org/10.1007/s40964-023-00506-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40964-023-00506-8

Keywords

Navigation