Skip to main content

Advertisement

Log in

Additive manufacturing in biomedical field: a critical review on fabrication method, materials used, applications, challenges, and future prospects

  • Review Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

Application of additive manufacturing methods is escalating in numerous sectors including the medical field owing to its enhanced productivity, functionality, patient-specific fabrication, and affordability. Additive manufacturing is considered a digital manufacturing technique that is rapidly transforming the medical space in terms of printing distinctive body parts with complex shapes and proposing customized and tailored resolutions to individual patients. In previous times, Additive Manufacturing (AM) is employed as a flexible and profitable technique for fabricating geometrically intricate medical organs, dental implants, and bones. Though patient-specific implants for bone disease, injury, and organ replacement are still a significant challenge for medical practitioners and researchers. In spite of the broad studies which were concluded on the characteristics of AM materials, there is still a necessity for a vigorous understanding of application-specific needs, processes, challenges, and considerations related to these techniques. Thus, the aim of this study is to present a comprehensive review of the most general AM processes, types of materials employed in AM, and applications of various AM techniques in the biomedical field. This study also outlines current limitations and challenges, which inhibit medical sciences to completely benefiting from the advanced AM opportunities, comprising production volume, post-processing, standards compliance, product quality, materials range, and maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13:
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

Data availability

This present study also discussed the existing challenges and future development of additive techniques for biomedical applications.

Abbreviations

3D:

Three dimensional

AM:

Additive manufacturing

BAG:

Bioactive glass

CAD:

Computer aided design

CCD:

Charge-coupled device

CT scan:

Computer technology scan

CVD:

Chemical vapor deposition

DMLS:

Direct metal laser sintering

EBM:

Electron beam melting

FDM:

Fused deposition modeling

FEA:

Finite element analysis

FEM:

Finite element method

FGM:

Functionally graded materials

FSAM:

Friction stir additive manufacturing

FSP:

Friction stir processing

FTIR:

Fourier transform infrared spectroscopy

HA:

Hydroxyapatite

HIP:

Hot Iso-static pressing

MRI:

Magnetic resonance imaging

PCL:

Photocrosslinkable

PCL:

Polycaprolactone

PDLLA:

Poly (D, L-Lactic Acid)

PDO:

Polydioxanone

PE:

Pseudoelasticity

PEEK:

Poly-ether-ether-ketone

PEG:

Polyethylene glycol

PGA:

Poly (glycolic acid)

PLA:

Polylactide

PLGA:

Poly lactic-co-glycolic acid

PLLA:

Poly (L-lactide)

PMMA:

Poly (methylmethacrylate)

PPF:

Poly (Propylene Fumarate)

PRS:

Powder Recovery System

PU:

Polyurethane

PVD:

Physical Vapour Deposition

RGD:

Arginylglycylaspartic acid

SBF:

Simulated Body Fluid

SEM:

Scanning Electron Microscope

SFF:

Solid Freeform

SLA:

Stereolithography

SLM:

Selective Laser Melting

SLS:

Selective Laser Sintering

SMAs:

Shape Memory Alloys

SME:

Shape Memory Effect

SMMs:

Shape Memory Materials

SMPs:

Shape Memory Polymers

STL:

Standard Triangulation Language

TPU:

Thermoplastic Polyurethane

UHMWPE:

Ultra-high molecular weight polyethylene

USP:

United States Pharmacopeia

µCT:

Microtomography

References

  1. Zadpoor AA (2017) Design for additive bio-manufacturing: from patient-specific medical devices to rationally designed meta-biomaterials. Int J Mol Sci 18:1607

    Article  Google Scholar 

  2. Hu Q, Sun XZ, Parmenter CDJ, Fay MW, Smith EF, Rance GA, He Y, Zhang F, Liu Y, Irvine D (2017) Additive manufacture of complex 3D Au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction. Sci Rep 7:17150

    Article  Google Scholar 

  3. McHugh KJ, Nguyen TD, Linehan AR, Yang D, Behrens AM, Rose S, Tochka ZL, Tzeng SY, Norman JJ, Anselmo AC (2017) Fabrication of fillable microparticles and other complex 3D microstructures. Science 357:1138–1142

    Article  Google Scholar 

  4. ASTM International (2015) ISO/ASTM52900—15 Standard Terminology for Additive Manufacturing—General Principles—Terminology; ASTM International, West Conshohocken PA USA

    Google Scholar 

  5. Gibson I, Rosen DW, Stucker B (2010) Additive Manufacturing Technologies. Springer, Berlin, Germany

    Book  Google Scholar 

  6. Hopkinson N, Dickens P (2006) Emerging rapid manufacturing processes Rapid Manufacturing: An Industrial Revolution for the Digital Age. John Wiley & Sons, Hoboken, NJ, USA, pp 55–80

    Google Scholar 

  7. Giannatsis J, Dedoussis V (2009) Additive fabrication technologies applied to medicine and health care: a review. Int J Adv Manuf Technol 40(1–2):116–127

    Article  Google Scholar 

  8. Pettersson A, Salmi M, Vallittu P, Serlo W, Tuomi J, Mäkitie AA (2020) Main clinical use of additive manufacturing (three- dimensional printing) in finland restricted to the head and neck area in 2016–2017. Scand J Surg 109:166–173

    Article  Google Scholar 

  9. Zadpoor AA, Malda J (2016) Additive manufacturing of biomaterials, tissues, and organs. Ann Biomed Eng 1:1–11

    Google Scholar 

  10. Calignano F, Galati M, Iuliano L, Minetola P (2019) Design of additively manufactured structures for biomedical applications: a review of the additive manufacturing processes applied to the biomedical sector. J Healthc Eng 2019:9748212

    Article  Google Scholar 

  11. Venne G, Esau G, Bicknell RT et al (2018) 3D printed anatomy specific fixture for consistent glenoid cavity position in shoulder simulator. J Healthc Eng 2018:2572730

    Article  Google Scholar 

  12. Salmi A, Calignano F, Galati M et al (2018) An integrated design methodology for components produced by laser powder bed fusion (L-PBF) process. Virtual Phys Prototyp 13(3):191–202

    Article  Google Scholar 

  13. Ballard DH, Mills P, Duszak R, Weisman JA, Rybicki FJ, Woodard PK (2020) Medical 3D printing cost-savings in orthopedic and maxillofacial surgery: cost analysis of operating room time saved with 3D printed anatomic models and surgical guides. Acad Radiol 27:1103–1113

    Article  Google Scholar 

  14. Mahmoud A, Bennett M (2015) Introducing 3-dimensional printing of a human anatomic pathology specimen: potential benefits for undergraduate and postgraduate education and anatomic pathology practice. Arch Pathol Lab Med 139:1048–1051

    Article  Google Scholar 

  15. Tack P, Victor J, Gemmel P, Annemans L (2016) 3D-printing techniques in a medical setting: A systematic literature review. Biomed Eng 15:115

    Google Scholar 

  16. Ballard DH, Tappa K, Boyer CJ, Jammalamadaka U, Hemmanur K, Weisman JA, Alexander JS, Mills DK, Woodard PK (2019) Antibiotics in 3D-printed implants, instruments and materials: Benefits, challenges and future directions. J. 3d Print Med 3:83–93

    Article  Google Scholar 

  17. Salmi M, Tuomi J, Paloheimo K, Paloheimo M, Björkstrand R, Mäkitie AA, Mesimäki K, Kontio R (2010) Digital design and rapid manufacturing in orbital wall reconstruction Innovative Developments in Design and Manufacturing—Advanced Research in Virtual and Rapid Prototyping. CRC Press, Boca Raton, FL, USA, pp 339–342

    Google Scholar 

  18. Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials 83:127–141

    Article  Google Scholar 

  19. Tahayeri A, Morgan M, Fugolin AP, Bompolaki D, Athirasala A, Pfeifer CS, Ferracane JL, Bertassoni LE (2018) 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent Mater 34:192–200

    Article  Google Scholar 

  20. Akmal JS, Salmi M, Mäkitie A, Björkstrand R, Partanen J (2018) Implementation of industrial additive manufacturing: Intelligent implants and drug delivery systems. J Funct Biomater 9:41

    Article  Google Scholar 

  21. Prasad LK, Smyth H (2016) 3D Printing technologies for drug delivery: A review. Drug Dev Ind Pharm 42:1019–1031

    Article  Google Scholar 

  22. Salmi M (2021) Additive manufacturing processes in medical applications. Materials 14:191

    Article  Google Scholar 

  23. Ibrahim MZ, Sarhan AAD, Yusuf F, Hamdi M, Yusuf F, Hamdi M (2017) Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopedic implants: a review article. J. Alloys Compd. pp 636–667

  24. Bansal G, Singh DB, Virk HS, Devrani A, Bhandari A (2019) Microstructural characterization, applications and process study of various additive manufacturing process: a review. Mater Today Proc 26:833–837

    Article  Google Scholar 

  25. Leon JS, Bharathiraja G, Jayakumar V (2020) Experimental and numerical investigations of optimum process window for friction stir welding using flat faced tool pin. Indian J Sci Technol 13(26):2609–2625

    Article  Google Scholar 

  26. Leon JS, Bharathiraja G, Jayakumar V (2020) A Review on Friction Stir Welding in Aluminium Alloys. IOP Conf Ser Mater Sci Eng 954:012007

    Article  Google Scholar 

  27. Vignesh M, Kumar GR et al (2021) Development of Biomedical Implants through Additive Manufacturing: A Review. J Mater Eng Perform. https://doi.org/10.1007/s11665-021-05578-7

    Article  Google Scholar 

  28. Srivastava M, Rathee S, Maheshwari S, Siddiquee AN, Kundra TK (2019) A review on recent progress in solid state friction based metal additive manufacturing: friction stir additive techniques. Crit Rev Solid State Mater Sci 44(5):345–377

    Article  Google Scholar 

  29. Khodabakhshi F, Gerlich AP (2018) Potentials and Strategies of Solid- State Additive Friction-Stir Manufacturing Technology: A Critical Review. J. Manuf. Process. pp 77–92.

  30. Ho YH, Joshi SS, Wu TC, Hung CM, Ho NJ, Dahotre NB (2020) In-Vitro Bio-Corrosion Behavior of Friction Stir Additively Manufactured AZ31B Magnesium Alloy-Hydroxyapatite Composites. Mater. Sci. Eng. C. pp 109.

  31. Bai L, Gong C, Chen X, Sun Y, Zhang J, Cai L, Zhu S, Xie SQ (2019) Additive manufacturing of customized metallic orthopedic implants: materials, structures, and surface modifications. Metals (Basel) 9(9):1–26

    Article  Google Scholar 

  32. Palanivel S, Nelaturu P, Glass B, Mishra RS (2015) Friction Stir additive manufacturing for high structural performance through microstructural control in an Mg Based WE43 Alloy. Mater Des 65:934–952

    Article  Google Scholar 

  33. Prashanth KG, Shahabi H.S, Attar H, Srivastava VC, Ellendt N, Uhlenwinkel V, Eckert J, Scudino S (2015) Production of high strength Al85Nd8Ni5Co2 alloy by selective laser melting. Additive Manufacturing 6:pp.1–5.

  34. Prashanth KG, Scudino S, Klauss HJ, Surreddi KB, Löber L, Wang Z, Chaubey AK, Kühn U, Eckert J (2014) Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment. Mater Sci Eng, A 590:153–160

    Article  Google Scholar 

  35. Zhang LC, Attar H, Calin M, Eckert J (2016) Review on manufacture by selective laser melting and properties of titanium based materials for biomedical applications, materials technology: advanced performance materials.

  36. Osakada K, Shiomi M (2006) Flexible manufacturing of metallic products by selective laser melting of powder. Int J Mach Tools Manuf 46:1188–1193

    Article  Google Scholar 

  37. Zhang LC, Klemm D, Eckert J, Hao YL, Sercombe TB (2011) Manufacture by selective laser melting and mechanical behavior of a biomedical Ti-24Nb-4Zr-8Sn alloy. Scr Mater 65:21–24

    Article  Google Scholar 

  38. Yadroitsev I, Krakhmalev P, Yadroitsava I (2013) Selective laser melting of Ti6Al4V alloy for biomedical applications: temperature monitoring and microstructural evolution. doi: https://doi.org/10.1016/j.jallcom.2013.08.183

  39. Hutmacher DW (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22(7):354–362

    Article  Google Scholar 

  40. Sarment DP, Sukovic P, Clinthorne N (2003) Accuracy of implant placement with a stereolithographic surgical guide. Int J Oral Maxillofac Implants 18(4):571–577

    Google Scholar 

  41. D’Urso PS, Earwaker WJ, Barker TM, Redmond MJ, Thompson RG, Effeney DJ (2000) Custom cranioplasty using stereolithography and acrylic. Br J Plast Surg 53(3):200–204

    Article  Google Scholar 

  42. Melchels PW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24):6121–6130

    Article  Google Scholar 

  43. Matsuda T, Mizutani M, Arnold SC (2000) Molecular design of photocurable liquid biodegradable copolymers. 1. Synthesis and photocuring characteristics. Macromolecules 33(3):795–800

    Article  Google Scholar 

  44. Matsuda T, Mizutani M (2002) Liquid acrylate-endcapped biodegradable poly(e-caprolactone-cotrimethylene carbonate). II. Computer-aided stereolithographicmicroarchitectural surface photoconstructs. J Biomed Mater Res. 62(3):395–403

    Article  Google Scholar 

  45. Ronca A, Ambrosio L, Grijpma DW (2013) Preparation of designed poly(D, L-lactide)/nanosized hydroxyapatite composite structures by stereolithography. Acta Biomater 9:5989–5996

    Article  Google Scholar 

  46. Lan PX, Lee JW, Seol YJ, Cho DW (2009) Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification. J Mater Sci: Mater Med 20:271–279

    Google Scholar 

  47. Mazzoli A (2013) Selective laser sintering in biomedical engineering. Med Biol Eng Comput 51:245–256

    Article  Google Scholar 

  48. Gusarova AV, Laouib T, Froyenc L, Titov VI (2003) Contact thermal conductivity of a powder bed in selective laser sintering. Int J Heat Mass Transf 46(6):1103–1109

    Article  Google Scholar 

  49. Dupin S, Lame O, Barre`s C, Charmeau JI (2012) Microstructural origin of physical and mechanical properties of polyamide 12 processed by laser sintering. EurPolym J 48(9):1611–1621

    Google Scholar 

  50. Ciocca L, Fantini M, De Crescenzio F, Corinaldesi G, Scotti R (2011) Direct Metal Laser Sintering (DMLS) of a customized titanium mesh for prosthetically guided bone regeneration of atrophic maxillary arches. Med BiolEngComput 49:1347–1352

    Google Scholar 

  51. Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU et al (2010) 3D printing based on imaging data: review of medical applications. Int J Comput Assist RadiolSurg 5(4):335–341

    Article  Google Scholar 

  52. Feng Z, Dong Y, Zhao Y, Bai S, Zhou B, Bi Y et al (2010) Computer- assisted technique for the design and manufacture of realistic facial prostheses. Br J Oral MaxillofacSurg 48(2):105–109

    Article  Google Scholar 

  53. Marafon PG, Mattos BS, Sabóia AC, Noritomi PY (2010) Dimensional accuracy of computer-aided design/computer-assisted manufactured orbital prostheses. Int J Prosthodont 23(3):271–276

    Google Scholar 

  54. Smith MH, Flanagan CL, Kemppainen JM, Sack JA, Chung H, Das S et al (2007) Computed tomography-based tissue-engineered scaffolds in craniomaxillofacial surgery. Int J Med Robot 3(3):207–216

    Article  Google Scholar 

  55. Williams JV, Revington PJ (2010) Novel use of an aerospace selective laser sintering machine for rapid prototyping of an orbital blowout fracture. Int J Oral MaxillofacSurg 39(2):182–184

    Article  Google Scholar 

  56. Winder J, Bibb R (2005) Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. J Oral Maxillofac Surg 63:1006–1015

    Article  Google Scholar 

  57. Wu G, Zhou B, Bi Y, Zhao Y (2008) Selective laser sintering technology for customized fabrication of facial prostheses. J Prosthet Dent 100(1):56–60

    Article  Google Scholar 

  58. Wu G, Bi Y, Zhou B, Zemnick C, Han Y, Kong L et al (2009) Computer-aided design and rapid manufacture of an orbital prosthesis. Int J Prosthodont 22(3):293–295

    Google Scholar 

  59. Hurson C, Tansey A, O’Donnchadha B, Nicholson P, Rice J, McElwain J (2007) Rapid prototyping in the assessment, classification and preoperative planning of acetabular fractures. Injury 38(10):1158–1162

    Article  Google Scholar 

  60. Pressel T, Max S, Pfeifer R, Ostermeier S, Windhagen H, Hurschler C (2008) A rapid prototyping model for biomechanical evaluation of pelvic osteotomies. Biomed Tech (Berl) 53(2):65–69

    Article  Google Scholar 

  61. Rogers B, Bosker GW, Crawford RH, Faustini MC, Neptune RR, Walden G et al (2007) Advanced trans-tibial socket fabrication using selective laser sintering. ProsthetOrthotInt 3:88–100

    Google Scholar 

  62. Mori K, Yamamoto T, Oyama K, Ueno H, Nakao Y, Honma K (2008) Modified three-dimensional skull base model with artificial dura mater, cranial nerves, and venous sinuses for training in skull base surgery: technical note. Neurol Med Chir (Tokyo) 48:582–587

    Article  Google Scholar 

  63. Muller A, Krishnan KG, Uhl E, Mast G (2003) The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery. J CraniofacSurg 14:899–914

    Article  Google Scholar 

  64. Suzuki M, Hagiwara A, Ogawa Y, Ono H (2007) Rapid-prototyped temporal bone and inner-ear models replicated by adjusting computed tomography thresholds. J LaryngolOtol 121:1025–1028

    Article  Google Scholar 

  65. Wanibuchi M, Ohtaki M, Fukushima T, Friedman AH, Houkin K (2010) Skull base training and education using an artificial skull model created by selective laser sintering. Acta Neurochir (Wien) 152:1055–1059

    Article  Google Scholar 

  66. Feng Z, Zhao J, Zhou L, Dong Y, Zhao Y (2009) Modified animal model and computer-assisted approach for dentoalveolar distraction osteogenesis to reconstruct unilateral maxillectomy defect. J Oral MaxillofacSurg 67:2266–2274

    Article  Google Scholar 

  67. Lee SJ, Jang KA, Spangberg LSW, Kim E, Jung Y, Lee CY et al (2006) Three-dimensional visualization of a mandibular first molar with three distal roots using computer-aided rapid prototyping. Oral Surg Oral Med Oral Pathol Oral RadiolEndod 101:668–674

    Article  Google Scholar 

  68. Leiggener C, Messo E, Thor A, Zeilhofer HF, Hirsch JM (2009) A selective laser sintering guide for transferring a virtual plan to real time surgery in composite mandibular reconstruction with free fibula osseous flaps. Int J Oral MaxillofacSurg 38:187–192

    Article  Google Scholar 

  69. Sannomiya EK, Silva JV, Brito AA, Saez DM, Angelieri F, DalbenGda S (2008) Surgical planning for resection of an ameloblastoma and reconstruction of the mandible using a selective laser sintering 3D biomodel. Oral Surg Oral Med Oral Pathol Oral RadiolEndod 106:e36–e40

    Article  Google Scholar 

  70. EOS Press (2011) EOS shows potential of PEEK for use in Laser-Sintered Craniofacial Implants at PD&M/MD&M West. EOS Press Releases. http://www.eos.info/en/news-events/pressreleases.html.

  71. Xie F, He X, Ji X, Wu M, He X, Qu X (2016) Structural characterisation and mechanical behaviour of porous Ti-7.5Mo alloy fabricated by selective laser sintering for biomedical applications. Mater Technol. https://doi.org/10.1080/10667857.2016.1173169

    Article  Google Scholar 

  72. Lee G, Barlow JW, Fox WC, Aufdermorte TB (1996) Biocompatibility of SLS-formed calcium phosphate implants. In: Proceedings of solid freeform fabrication symposium, Austin, TX, 12–14 August, pp 15–22.

  73. Lee G, Barlow JW (1993) Selective laser sintering of bioceramic materials for implants. In: Proceedings of solid freeform fabrication symposium, Austin, TX, 9–11 August, pp 376–380

  74. Water JJ, Bohr A, Boetker J, Aho J, Sandler N, Nielsen HM, Rantanen J (2015) Three dimensional printing of drug-eluting implants: preparation of an antimicrobial polylactide feedstock material. J Pharm Sci 104:1099–1107

    Article  Google Scholar 

  75. Sadia M, Sosnicka A, Arafat B, Isreb A, Ahmed W, Kelarakis A, Alhnan MA (2016) Adaption of pharmaceutical excipients to FDM 3D printing for the fabrication of patient-tailored immediate release tablets. Int J Pharm 513:659–668

    Article  Google Scholar 

  76. Zein I, Hutmacher DW, Tan KC, Teoh SH (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23:1169–1185

    Article  Google Scholar 

  77. Zhao F, Li D, Jin Z (2018) Preliminary investigation of poly-ether-ether-ketone based on fused deposition modeling for medical applications. Materials 11:288

    Article  Google Scholar 

  78. Espalin D, Arcaute K, Rodriguez D, Medina F, Posner M, Wicker R (2010) Fused deposition modeling of patient-specific polymethylmethacrylate implants. Rapid Prototyp J 16:164–173

    Article  Google Scholar 

  79. Prabhakar P, Sen RK, Dwivedi N, Khan R, Solanki PR, Srivastava AK, Dhand C (2021) 3D-Printed Microfluidics and Potential Biomedical Applications. Front Nanotechnol 3:609355. https://doi.org/10.3389/fnano.2021.609355

    Article  Google Scholar 

  80. Tappa K, Jammalamadaka U (2018) Novel biomaterials used in medical 3d printing techniques. J Funct Biomater 9:17. https://doi.org/10.3390/jfb9010017

    Article  Google Scholar 

  81. Matter-Parrat V, Liverneaux P (2019) Impression 3D en chirurgie de la main. Hand Surg Rehabilitat. https://doi.org/10.1016/j.hansur.2019.09.006

    Article  Google Scholar 

  82. Introduction to 3D Polyjet printing: https://electroloom.com/polyjet-3d-printing-guide/

  83. Gu BK, Choi DJ, Park SJ, Kim MS, Kang CM, Kim CH (2016) 3-dimensional bioprinting for tissue engineering applications. Biomater Res 20:12. https://doi.org/10.1186/s40824-016-0058-2

    Article  Google Scholar 

  84. Bracaglia LG, Smith BT, Watson E, Arumugasaamy N, Mikos AG, Fisher JP (2017) 3D printing for the design and fabrication of polymer-based gradient scaffolds. Acta Biomater 56:3–13. https://doi.org/10.1016/j.actbio.2017.03.030

    Article  Google Scholar 

  85. Bose S, Ke D, Sahasrabudhe H, Bandyopadhyay A (2018) Additive manufacturing of biomaterials. Prog Mater Sci 93:45–111. https://doi.org/10.1016/j.pmatsci.2017.08.003

    Article  Google Scholar 

  86. Salmi M (2016) Possibilities of preoperative medical models made by 3D printing or additive manufacturing. J Med Eng 2016:1–6. https://doi.org/10.1155/2016/6191526

    Article  Google Scholar 

  87. Li X, Wang C, Zhang W, Li Y (2010) Fabrication and compressive properties of Ti6Al4Vimplant with honeycomb-like structure for biomedical applications. RapidPrototyp J 16:44–49

    Google Scholar 

  88. Nasr EA, Ali K, Al-Ahmari A, Moiduddin K (2014) Digital design and fabrication of customized mandible implant. TSI Press, World Automation Congress

    Book  Google Scholar 

  89. Heinl P, Muller L, Korner C, Singer RF, Muller FA (2008) Cellular Ti–6Al–4V structureswith interconnected macro porosity for bone implants fabricated by selectiveelectron beam melting. Acta Biomater 4:1536–1544

    Article  Google Scholar 

  90. Liu Y, Li S, Hou W, Wang S, Hao Y, Yang R et al (2016) Electron beammelted beta-type Ti–24Nb–4Zr–8Sn porous structures with highstrength-to-modulus ratio. J Mater SciTechnol 32:505–508

    Google Scholar 

  91. Eltaggaz AA, Cloutier J, Deiab I (2021) Thermal post-processing of 4140 alloy steel parts fabricated by selective laser melting (SLM). Proc Can Soc Mech Eng Int Congr. https://doi.org/10.32393/csme

    Article  Google Scholar 

  92. Moran TP, Carrion PE, Lee S, Shamsaei N, Phan N, Warner DH (2022) Hot Isostatic pressing for fatigue critical additively manufactured Ti-6Al-4V. Materials 15(6):2051

    Article  Google Scholar 

  93. Lario J, Vicente Á, Amigó V (2021) Evolution of the microstructure and mechanical properties of a Ti35Nb2Sn alloy post-processed by hot isostatic pressing for biomedical applications. Metals 11(7):1027

    Article  Google Scholar 

  94. Kmiecik B, Labowska M, Detyna J (2019) Determination of the difference between two complex polymer models simulating the behaviour of biological structures. Biocybern Biomed Eng 39:503–511. https://doi.org/10.1016/j.bbe.2019.04.001

    Article  Google Scholar 

  95. Hong D, Chou DT, Velikokhatnyi OI, Roy A, Lee B, Swink I et al (2016) Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys. Acta Biomater 45:375–386

    Article  Google Scholar 

  96. Tai BL, Kao YT, Payne N, Zheng Y, Chen L, Shih AJ (2018) 3D Printed composite for simulating thermal and mechanical responses of the cortical bone in orthopaedic surgery. Med EngPhys 61:61–68

    Article  Google Scholar 

  97. Kondo K, Harada N, Masuda H, Sugo N, Terazono S, Okonogi S et al (2016) A neurosurgical simulation of skull base tumors using a 3D printed rapid prototyping model containing mesh structures. Acta Neurochir (Wien) 158:1213–1219

    Article  Google Scholar 

  98. Jakus AE (2018) An introduction to 3d printing past, present, and future promise. 3D Print Orthopaedic Surg 1.

  99. Herzog D, Seyda V, Wycisk E, Emmelmann C (2016) Additive manufacturing of metals. Acta Mater 117:371–392. https://doi.org/10.1016/j.actamat.2016.07.019

    Article  Google Scholar 

  100. Bandyopadhyay A, Bose S, Das S (2015) 3D printing of biomaterials. MRS Bull 40:108–115. https://doi.org/10.1557/mrs.2015.3

    Article  Google Scholar 

  101. Trenfield SJ, Awad A, Madla CM, Hatton GB, Firth J, Goyanes A, Gaisford S, Basit AW (2019) Shaping the future: recent advances of 3D printing in drug delivery and healthcare. Expert Opin Drug Deliv 16:1081–1094. https://doi.org/10.1080/17425247.2019.1660318

    Article  Google Scholar 

  102. Lendlein A, Kelch S (2002) Cover picture: angew. Chem Int Ed 41(12):1973–1973

    Article  Google Scholar 

  103. Ölander A (1932) An electrochemical investigation of solid cadmium-gold alloys. Am Chem Soc 54:3819–3833

    Article  Google Scholar 

  104. Buehler WJ, Gilfrich JV, Wiley RC (1963) Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys 34(5):1475–1477

    Article  Google Scholar 

  105. Jain M, Singh S, Cadeiras M (2013) A case of nitinol allergy causing pericardial tamponade. J Invasive Cardiol 25(9):E180–E182

    Google Scholar 

  106. Jetty P, Jayaram S, Veinot J, Pratt M (2013) Superficial femoral artery nitinol stent in a patient with nickel allergy. J Vasc Surg 58(5):1388–1390

    Article  Google Scholar 

  107. Cederström J, Van Humbeeck J (1995) Relationship between shape memory material properties and applications. Le J de Physique IV 5(C2):335

    Google Scholar 

  108. Yamauchi K (2011) Shape Memory and Superelastic Alloys Technology Application. In: K. Yamauchi, I. Ohkata, K. Tsuchiya, S. Miyazaki (eds). Cambridge, Woodhea, pp. 43–52.

  109. Maruyama T, Kubo H (2011) Shape Memory and Superelastic Alloys Technology Application. In: K. Yamauchi, I. Ohkata, K. Tsuchiya, S. Miyazaki (eds.) (Cambridge: Woodhead), pp. 141–159.

  110. Elahinia M, Moghaddam NS, Andani MT, Amerinatanzi A, Bimber BA, Hamilton RF (2016) Fabrication of NiTi through additive manufacturing: a review. Prog Mater Sci 83:630–663

    Article  Google Scholar 

  111. Barbarino S, Saavedra Flores EL, Ajaj RM, Dayyani I, Friswell MI (2014) A review on shape memory alloys with applications to morphing aircrafts. Smart Mater Struct 23:63001

    Article  Google Scholar 

  112. Parvizi S, Hasannaeimi V, Saebnoori E, Shahrabi T, Sadrnezhaad SK (2012) Fabrication of porous NiTi alloy via powder metallurgy and its mechanical characterization by shear punch method. Russian J Non-Ferrous Metal 53(2):169–175

    Article  Google Scholar 

  113. Bansiddhi A, Sargeant TD, Stupp SI, Dunand DC (2008) Porous NiTi for bone implants: a review. Acta Biomater 4(4):773–782

    Article  Google Scholar 

  114. Duerig T, Pelton A, Stöckel DJMS (1999) An overview of nitinol medical applications. Mater Sci Eng A 273:149–160

    Article  Google Scholar 

  115. Shabalovskaya SA (1996) On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys. Bio-Med Mater Eng 6(4):267–289

    Article  Google Scholar 

  116. Rondelli G, Vicentini B (2000) Evaluation by electrochemical tests of the passive film stability of equiatomic Ni-Ti alloy also in presence of stress-induced martensite. J Biomed Mater Res 51(1):47–54

    Article  Google Scholar 

  117. Lecce L (ed) (2014) Shape memory alloy engineering: for aerospace, structural and biomedical applications. Elsevier, Amsterdam

    Google Scholar 

  118. Song C (2010) History and current situation of shape memory alloys devices for minimally invasive surgery. Open Med Dev J 2:1

    Google Scholar 

  119. Morgan NB (2004) Medical shape memory alloy applications—the market and its products. Mater Sci Eng A 378:16–23

    Article  Google Scholar 

  120. Petrini L, Migliavacca F (2011). Biomedical applications of shape memory alloys. J Metall. 2011.

  121. Cuschieri A (1991) Variable curvature shape-memory spatula for laparoscopic surgery. Surg Endosc 5:179–181

    Article  Google Scholar 

  122. Machado LG, Savi MA (2003) Medical applications of shape memory alloys. Braz J Med Biol Res 36:683–691

    Article  Google Scholar 

  123. Cekirge S, Weiss JP, Foster RG, Neiman HL, McLean GK (1993) Percutaneous retrieval of foreign bodies: experience with the nitinol Goose Neck snare. J Vasc Interv Radiol 4:805–810

    Article  Google Scholar 

  124. Chi FL, Wang SJ, Liu HJ (2007) Auricle reconstruction with a nickel-titanium shape memory alloy as the framework. Laryngoscope 117:248–252

    Article  Google Scholar 

  125. Kasano F, Morimitsu T (1997) Utilization of nickel-titanium shape memory alloy for stapes prosthesis. Auris Nasus Larynx 24:137–142

    Article  Google Scholar 

  126. Pelton AR, Stöckel D, Duerig TW (2000) Medical uses of nitinol. In Materials science forum Trans Tech Publications Ltd 327:63–70

    Article  Google Scholar 

  127. Idelsohn S, Pena J, Lacroix D, Planell JA, Gil FJ, Arcas A (2004) Continuous mandibular distraction osteogenesis using superelastic shape memory alloy (SMA). J Mater Sci - Mater Med 15:541–546

    Article  Google Scholar 

  128. Duerig TW, Melton KN, Stöckel DWCM. (2013). Engineering aspects of shape memory alloys. Butterworth-heinemann. pp. 470–476.

  129. Palmer SN, Greenberg JA (2009) Transcervical sterilization: a comparison of Essure® permanent birth control system and Adiana® permanent contraception system. Rev Obstet Gynecol 2:84

    Google Scholar 

  130. Kitamura K, Tobushi H, Yoshimi Y, Sugimoto Y (2009) Evaluation of mechanical characteristics of shape memory alloy for brain spatula. Nihon Kikai Gakkai Ronbunshu A Hen/Trans Jpn Soc Mech Eng Part A 75:439–445

    Google Scholar 

  131. De Bock S, Iannaccone F, De Santis G, De Beule M, Mortier P, Verhegghe B, Segers P (2012) Our capricious vessels: the influence of stent design and vessel geometry on the mechanics of intracranial aneurysm stent deployment. J Biomech 45:1353–1359

    Article  Google Scholar 

  132. Schuessler A (2001). Laser processing of Nitinol materials. In Proceed. of the Intern. Conf. on Shape Memory and Superelastic Techn pp. 25–32.

  133. Ryklina EP, Khmelevskaya IY, Morozova TV, Prokoshkin SD (2008) Biomedical engineering in design and application of nitinol stents with shape memory effect. Mater Sci Eng A 651:481–482

    Google Scholar 

  134. Olson JL, Shandas R, Erlanger M (2012) Development of a minimally invasive, injectable, shape memory suture and delivery system. Ann Biomed Eng 40:1520–1529

    Article  Google Scholar 

  135. Chan BQY, Low ZWK, Heng SJW, Chan SY, Owh C, Loh XJ (2016) Recent advances in shape memory soft materials for biomedical applications. ACS Appl Mater Interfaces 8:10070–10087

    Article  Google Scholar 

  136. Wang S, Ma Z, Zhang T (2017) Optimization and modeling of biohydrogen production by mixed bacterial cultures from raw cassava starch. Front Chem Sci Eng 11:100–106

    Article  Google Scholar 

  137. Small W IV, Wilson TS, Benett WJ, Loge JM, Maitland DJ (2005) Laser-activated shape memory polymer intravascular thrombectomy device. Opt Express 13:8204–8213

    Article  Google Scholar 

  138. Li G, Fei G, Liu B, Xia H, Zhao Y (2014) Shape recovery characteristics for shape memory polymers subjected to high intensity focused ultrasound. RSC Adv 4:32701–32709

    Article  Google Scholar 

  139. Peterson GI, Dobrynin AV, Becker ML (2017) Biodegradable shape memory polymers in medicine. Adv Healthc Mater 6:1700694

    Article  Google Scholar 

  140. Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296:1673–1676

    Article  Google Scholar 

  141. Rodriguez JN, Clubb FJ, Wilson TS, Miller MW, Fossum TW, Hartman J, Maitland DJ (2014) In vivo response to an implanted shape memory polyurethane foam in a porcine aneurysm model. J Biomed Mater Res, Part A 102:1231–1242

    Article  Google Scholar 

  142. Jung YC, Cho JW (2010) Application of shape memory polyurethane in orthodontic. J Mater Sci - Mater Med 21:2881–2886

    Article  Google Scholar 

  143. Rom M, Fabia J, Ślusarczyk C, Janicki J, Kasperczyk J, Dobrzyński P (2014) Structural transformation of terpolymer poly (L-lactide-glycolide-trimethylene carbonate) with shape memory effect during the degradation process. Polimery 59:562–568

    Article  Google Scholar 

  144. Baer GM, Wilson TS, Small W IV, Hartman J, Benett WJ, Matthews DL, Maitland DJ (2009) Thermomechanical properties, collapse pressure, and expansion of shape memory polymer neurovascular stent prototypes. J Biomed Mater Res B Appl Biomater 90:421–429

    Article  Google Scholar 

  145. Meng B, Wang J, Zhu N, Meng QY, Cui FZ, Xu YX (2006) Study of biodegradable and self-expandable PLLA helical biliary stent in vivo and in vitro. J Mater Sci - Mater Med 17:611–617

    Article  Google Scholar 

  146. Zarek M, Mansour N, Shapira S, Cohn D (2017) 4D printing of shape memory-based personalized endoluminal medical devices. Macromol Rapid Commun 38:1600628

    Article  Google Scholar 

  147. Ajili SH, Ebrahimi NG, Soleimani M (2009) Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants. Acta Biomater 5:1519–30

    Article  Google Scholar 

  148. Zhang D, George OJ, Petersen KM, Jimenez-Vergara AC, Hahn MS, Grunlan MA (2014) A bioactive “self-fitting” shape memory polymer scaffold with potential to treat cranio-maxillo facial bone defects. Acta Biomater 10:4597–4605

    Article  Google Scholar 

  149. Zhang B, DeBartolo JE, Song J (2017) Shape recovery with concomitant mechanical strengthening of amphiphilic shape memory polymers in warm water. ACS Appl Mater Interfaces 9:4450–4456

    Article  Google Scholar 

  150. Salvekar AV, Huang WM, Xiao R, Wong YS, Venkatraman SS, Tay KH, Shen ZX (2017) Water-responsive shape recovery induced buckling in biodegradable photo-cross-linked poly (ethylene glycol)(PEG) hydrogel. Acc Chem Res 50:141–150

    Article  Google Scholar 

  151. Tang S, Zhang CY, Huang MN, Luo YF, Liang ZQ (2013) Fallopian tube occlusion with a shape memory polymer device: evaluation in a rabbit model. Contraception 87:235–241

    Article  Google Scholar 

  152. Bao M, Zhou Q, Dong W, Lou X, Zhang Y (2013) Ultrasound-modulated shape memory and payload release effects in a biodegradable cylindrical rod made of chitosan-functionalized PLGA microspheres. Biomacromol 14:1971–1979

    Article  Google Scholar 

  153. Maitland DJ, Wilson T, Schumann DL, Baer G (2002) Conference proceedings—lasers and electro-optics society annual meeting. 1:359.

  154. Chen C, Hu J, Huang H, Zhu Y, Qin T (2016) Design of a smart nerve conduit based on a shape-memory polymer. Adv Mater Technol 1:1600015

    Article  Google Scholar 

  155. Sidhu HS, Kumar S (2019) Design and fabrication of prosthetic leg. J Compos Theory 12(7):973–981

    Google Scholar 

  156. Pradhan P, Kumar S, Pattnaik S (2009) A state of the art in functionally graded materials and their analysis. Mater Today Proc 18:3931–3936. https://doi.org/10.1016/j.matpr.2019.07.333

    Article  Google Scholar 

  157. Kumar S, Kumar M, Handa A (2018) Combating hot corrosion of boiler tubes- a study. Eng Fail Anal J 94:379–395. https://doi.org/10.1016/j.engfailanal.2018.08.004

    Article  Google Scholar 

  158. Suresh S, Mortensen A (1997) Functionally graded metals and metal ceramic composites: part 2 Thermomechanical behaviour. Int Mater Rev 42:85–101

    Article  Google Scholar 

  159. Kumar R, Kumar M, Chohan JS (2021) The role of additive manufacturing for biomedical applications: a critical review. J Manuf Process 64:828–850

    Article  Google Scholar 

  160. Oshkour A, Abu Osman N, Yau Y, Tarlochan F, Wan Abas W (2012) Design of new generation femoral prostheses using functionally graded materials: A finite element analysis. Proc Inst Mech Eng H 227:3–17

    Article  Google Scholar 

  161. Oshkour A, Abu Osman N, Davoodi M, Yau Y, Tarlochan F, Wan Abas W, Bayat M (2013) Finite element analysis on longitudinal and radial functionally graded femoral prosthesis. Int J Numer Methods Biomed Eng 29:1412–1427

    Article  Google Scholar 

  162. Hedia HS, Shabara MAN, El-Midany TT, Fouda N (2005) A method of material optimization of cementless stem through functionally graded material. Int J Mech Mater Des 1:329–346

    Article  Google Scholar 

  163. Bahraminasab M, Sahari BB, Edwards KL, Farahmand F, Hong TS, Naghibi H (2013) Material tailoring of the femoral component in a total knee replacement to reduce the problem of aseptic loosening. Mater Des 52:441–451

    Article  Google Scholar 

  164. Al-Jassir FF, Fouad H, Alothman OY (2013) In vitro assessment of Function Graded (FG) artificial Hip joint stem in terms of bone/cement stresses: 3D Finite Element (FE) study. Biomed Eng 12:5

    Google Scholar 

  165. Gabbrielli R, Turner IG, Bowen CR, Wang H, Johnston S, Rosen D, Cheng A, Humayun A, Cohen DJ, Boyan BD et al (2006) Design of a graded cellular structure for an acetabular hip replacement component. Biofabrication 6:45007

    Google Scholar 

  166. Hazlehurst KB, Wang CJ, Stanford M (2013) The potential application of a Cobalt Chrome Molybdenum femoral stem with functionally graded orthotropic structures manufactured using Laser Melting technologies. Med Hypotheses 81:1096–1099

    Article  Google Scholar 

  167. Boccaccio A, Uva AE, Fiorentino M, Mori G, Monno G (2016) Geometry design optimization of functionally graded scaffolds for bone tissue engineering: A mechanobiological approach. PLoS One 11:0146935

    Article  Google Scholar 

  168. Sing SL, An J, Yeong WY, Wiria FE (2016) Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs. J Orthop Res 34:369–385

    Article  Google Scholar 

  169. Stratasys Ltd. Available from: https://www.stratasys.com/materials/search. Accessed Mar 2022

  170. Gladman AS, Garcia-Leiner M, Sauer-Budge AF (2019) Emerging polymeric materials in additive manufacturing for use in biomedical applications. AIMS Bioeng 6(1):1–20. https://doi.org/10.3934/bioeng.2019.1.1

    Article  Google Scholar 

  171. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543

    Article  Google Scholar 

  172. Park SH, Yun BG, Won JY et al (2017) New application of three-dimensional printing biomaterial in nasal reconstruction. Laryngoscope 127:1036–1043

    Article  Google Scholar 

  173. Giordano RA, Wu BM, Borland SW et al (1996) Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. J BiomaterSci 8:63–75

    Article  Google Scholar 

  174. Rengier F, Mehndiratta A, von Tengg-Kobligk H et al (2010) 3D printing based on imaging data: review of medical applications. Int J Comput Assist RadiolSurg 5:335–341

    Article  Google Scholar 

  175. Oberoi G, Nitsch S, Edelmayer M, et al. (2018) 3D printing—encompassing the facets of dentistry. Front BioengBiotechnol 6.

  176. Dawood A, Marti Marti B, Sauret-Jackson V et al (2015) 3D printing in dentistry. Br Dent J 219:521–529

    Article  Google Scholar 

  177. Rosen JE, Size A, Yang Y et al (2015) Artificial hand for minimally invasive surgery: design and testing of initial prototype. SurgEndosc 29:61–67

    Google Scholar 

  178. Vujaklija I, Farina D (2018) 3D printed upper limb prosthetics. Expert Rev Med Dev 15:505–512

    Article  Google Scholar 

  179. e-NABLE 3D-printable prosethetic devices. Available from: https://3dprint.nih.gov/collections/prosthetics. Accessed Mar 2022

  180. ConMedSmartNail Implant. Available from: http://www.conmed.com/en/products/orthopedics/knee/cartilage/cartilage-repair/smartnail-implant. Accessed Mar 2022

  181. Ethicon Monocryl (poliglecaprone 25) suture. (2018) Available from: https://www.ethicon.com/emea/products/wound-closure/absorbable-sutures/monocryl-poliglecaprone-25-suture. Accessed Mar 2022

  182. Spineology Rampart O Interbody Fusion. Available from: https://www.spineology.com/united-states/our-products/rampart-o. Accessed Mar 2022

  183. Bard Ventrio Hernia Patch. (2018) Available from: https://www.crbard.com/Davol/en-US/products/Ventrio-Hernia-Patch. Accessed Mar 2022

  184. Gopinathan J, Noh I (2018) Recent trends in bioinks for 3D printing. Biomater Res 22:11

    Article  Google Scholar 

  185. Derakhshanfar S, Mbeleck R, Xu K et al (2018) 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioact Mater 3:144–156

    Google Scholar 

  186. OIS J&J's plans for smart & 3D printable contact lenses sAvailable from: https://ois.net/jjs-plans-for-smart-3d-printable-contact-lenses/. Accessed Mar 2022

  187. He Y, Yang F, Zhao H et al (2016) Research on the printability of hydrogels in 3D bioprinting. Sci rep 6:29977

    Article  Google Scholar 

  188. Bode F, da Silva MA, Smith P et al (2013) Hybrid gelation processes in enzymatically gelled gelatin: impact on nanostructure, macroscopic properties and cellular response. Soft Matter 9:6986–6999

    Article  Google Scholar 

  189. Huettner N, Dargaville TR, Forget A (2018) Discovering cell-adhesion peptides in tissue engineering: beyond RGD. Trends Biotechnol 36:372–383

    Article  Google Scholar 

  190. Boyer R, Weisch G, Collings EW (1994) Materials properties handbook: titanium alloy. ASM International. ISBN: 13–978–0–87170–481–8.

  191. Elomaa L, Teixeira S, Hakala R, Korhonen H, Grijpma DW, Seppälä JV (2011) Preparation of poly(ε-caprolactone)-based tissue engineering scaffolds bystereolithography. Acta Biomater 7:3850–3856

    Article  Google Scholar 

  192. Brach del Prever EM, Bistolfi A, Bracco P, Costa L (2009) UHMWPE for arthroplasty:past or future? J OrthopTraumatol 10:1–8

    Google Scholar 

  193. Rimell JT, Marquis PM (2000) Selective laser sintering of ultra-high molecular weight polyethylene for clinical applications. J Biomed Mater Res 53:414–420

    Article  Google Scholar 

  194. Peltola MJ, Vallittu PK, Vuorinen V, Aho AAJ, Puntala A, Aitasalo KMJ (2012) Novel composite implant in craniofacial bone reconstruction. Eur Arch Otorhinolaryngol 269:623–628

    Article  Google Scholar 

  195. Chocholata P, Kulda V, Babuska V (2019) Fabrication of scaffolds for bone-tissue regeneration. Materials 12:568

    Article  Google Scholar 

  196. Riedl A, Schlederer M, Pudelko K, Stadler M, Walter S, Unterleuthner D, Unger C, Kramer N, Hengstschläger M, Kenner L et al (2017) Comparison of cancer cells in 2D vs 3D culture reveals differences inAKT–mTOR–S6K signaling and drug responses. J Cell Sci 130:203–218

    Google Scholar 

  197. Cui H, Nowicki M, Fisher JP, Zhang LG (2017) 3D bioprinting for organ regeneration. Adv Healthc Mater 6:1601118

    Article  Google Scholar 

  198. Kim Y, Kang K, Yoon S, Kim JS, Park SA, KimWD LSB, Ryu KY, Jeong J, Choi D (2018) Prolongation of liver-specific function for primary hepatocytes maintenance in 3D printed architectures. Organogenesis 14:1–12

    Article  Google Scholar 

  199. Ali M, Yoo JJ, Zahran F, Atala A, Lee SJ (2019) A photo—crosslinkable kidney ECM—derived bioink accelerates renal tissue formation. Adv Healthc Mater 8:1800992

    Article  Google Scholar 

  200. Lee W, Pinckney J, Lee V, Lee JH, Fischer K, Polio S, Park JK, Yoo SS (2009) Three-dimensional bioprinting of rat embryonic neural cells. Neuro Report 20:798–803

    Google Scholar 

  201. Kim JH, Seol Y-J, Ko IK, Kang H-W, Lee YK, Yoo JJ, Atala A, Lee SJ (2018) 3D Bioprinted Human Skeletal Muscle Constructs for Muscle Function Restoration. Sci Rep 8:1–5

    Google Scholar 

  202. Reid JA, Mollica PA, Bruno RD, Sachs PC (2018) Consistent and reproducible cultures of large-scale 3D mammary epithelial structures using an accessible bioprinting platform. Breast Cancer Res 20:122

    Article  Google Scholar 

  203. Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K, Goli-Malekabadi Z, Aleman J, Colosi C, Busignani F, Dell’Erba V et al (2016) Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110:45–59

    Article  Google Scholar 

  204. Osidak EO, Karalkin PA, Osidak MS, Parfenov VA, Sivogrivov DE, Pereira F, Gryadunova AA, Koudan EV, Khesuani YD, Êasyanov VA et al (2019) Viscoll collagen solution as a novel bioink for direct 3D bioprinting. J Mater Sci Mater Med 30:31

    Article  Google Scholar 

  205. Kazzazi SM, Kranioti EF (2018) Applicability of 3D-dental reconstruction in cervical odontometrics. Am J Phys Anthr 165:370–377

    Article  Google Scholar 

  206. Martorelli M, Gerbino S, Giudice M, Ausiello P (2013) A comparison between customized clear and removable orthodontic appliancesmanufactured using RP and CNC techniques. Dent Mater 29:e1–e10

    Article  Google Scholar 

  207. Hixon KR, Melvin AM, Lin AY, Hall AF, Sell SA (2017) Cryogel scaffolds from patient-specific 3D-printed molds for personalized tissue-engineered bone regeneration in pediatric cleft-craniofacial defects. J Biomater Appl 32:598–611

    Article  Google Scholar 

  208. Haglin JM, Eltorai AE, Gil JA, Marcaccio SE, Botero-Hincapie J, Daniels AH (2016) Patient-Specific Orthopaedic Implants. Orthop Surg 8:417–424

    Article  Google Scholar 

  209. Chang B, Song W, Han T, Yan J, Li F, Zhao L, Kou H, Zhang Y (2016) Influence of pore size of porous titanium fabricated by vacuum diffusion bonding of titanium meshes on cell penetration and bone ingrowth. Acta Biomater 33:311–321

    Article  Google Scholar 

  210. Shim JH, Won JY, Park JH, Bae JH, Ahn G, Kim CH, Lim DH, Cho DW, Yun WS, Bae EB et al (2017) Effects of 3D-printed Polycaprolactone/beta-Tricalcium phosphate membranes on guided bone regeneration. Int J Mol Sci 18:899

    Article  Google Scholar 

  211. Nauth A, Schemitsc E, Norris B, Nollin Z, Watson JT (2018) Critical-size bone defects: is there a consensus for diagnosis and treatment? J Orthop Trauma 32(Suppl. 1):S7–S11

    Article  Google Scholar 

  212. Zhang W, Feng C, Yang G, Li G, Ding X, Wang S, Dou Y, Zhang Z, Chang J, Wu C et al (2017) 3D-printed scaffolds with synergistic effect of hollow-pipe structure and bioactive ions for vascularized bone regeneration. Biomaterials 135:85–95

    Article  Google Scholar 

  213. Wen Y, Xun S, Haoye M, Baichuan S, Peng C, Xuejian L, Kaihong Z, Xuan Y, Jiang P, Shibi L (2017) 3D printed porous ceramic scaffolds for bone tissue engineering: a review. Biomater Sci 5:1690–1698

    Article  Google Scholar 

  214. Lee CH, Cook JL, Mendelson A, Moioli EK, Yao H, Mao JJ (2010) Regeneration of the articular surface of the rabbit synovial joint by cell homing: A proof of concept study. Lancet 376:440–448

    Article  Google Scholar 

  215. Lee CH, Hajibandeh J, Suzuki T, Fan A, Shang P, Mao JJ (2014) Three-dimensional printed multiphase scaffolds for regeneration of periodontium complex. Tissue Eng Part A 20:1342–1351

    Article  Google Scholar 

  216. Sadia M, Arafat B, Ahmed W, Forbes RT, Alhnan MA (2018) Channelled tablets: an innovative approach to accelerating drug release from 3D printed tablets. J Control Release 269:355–363

    Article  Google Scholar 

  217. Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ (2015) 3D printing of tablets containing multiple drugs with defined release profiles. Int J Pharm 494:643–650

    Article  Google Scholar 

  218. Rankin TM, Giovinco NA, Cucher DJ, Watts G, Hurwitz B, Armstrong DG (2014) Three-dimensional printing surgical instruments: are we there yet? J Surg Res 189:193–197

    Article  Google Scholar 

  219. Guo F, Dai J, Zhang J, Ma Y, Zhu G, Shen J, Niu G (2017) Individualized 3D printing navigation template for pedicle screw fixation in upper cervical spine. PLoS One 12:e0171509

    Article  Google Scholar 

  220. George M, Aroom KR, Hawes HG, Gill BS, Love J (2017) 3D printed surgical instruments: the design and fabrication process. World J Surg 41:314–319

    Article  Google Scholar 

  221. Choi J, Kwon O-C, Jo W, Lee HJ, Moon M-W (2015) 4D printing technology: a review. 3D Print Addit Manuf 2:159–67

    Article  Google Scholar 

  222. Tibbits S (2014) 4D printing: multi-material shape change. Archit Des 84:116–121

    Google Scholar 

  223. Khare V, Sonkaria S, Lee G-Y, Ahn S-H, Chu W-S (2017) From 3D to 4D printing -design, material and fabrication for multi-functional multi-materials. Int J Precis Eng Manuf Technol 4:291–299

    Article  Google Scholar 

  224. Momeni F, Mehdi M, Hassani NS, Liu X, Ni J (2017) A review of 4D printing. MaterDes 122:42–79

    Article  Google Scholar 

  225. Choong YYC, Maleksaeedi S, Eng H, Wei J, Su P-C (2017) 4D printing of high performance shape memory polymer using stereolithography. Mater Des 126:219–225

    Article  Google Scholar 

  226. Sundaram S, Kim DS, Baldo MA, Hayward RC, Matusik W (2017) 3D-printedself-folding electronics. ACS Appl Mater Interfaces 9:32290–32298

    Article  Google Scholar 

  227. Ge Q, Sakhaei AH, Lee H, Dunn CK, Fang NX, Dunn ML (2016) Multimaterial 4Dprinting with tailorable shape memory polymers. Sci Rep 6(31110):1–11

    Google Scholar 

  228. Tibbits S, McKnelly C, Olguin C, Dikovsky D, Hirsch S (2014) 4D printing anduniversal transformation. In: Proc 34th ConfAssoc Comp Aid Design Arch p. 539–48.

  229. Raviv D, Zhao W, McKnelly C, Papadopoulou A, Kadambi A, Shi B et al (2015) Active printed materials for complex self-evolving deformations. Sci Rep 4(7422):1–8

    Google Scholar 

  230. Villar G, Graham AD, Bayley H (2013) A tissue-like printed material. Science 340:48–52

    Article  Google Scholar 

  231. Taylor DL, Panhuis M (2016) Self-healing hydrogels. Adv Mater 28:9060–9093

    Article  Google Scholar 

  232. Ostuzzi F, Rognoli V, Saldien J, Levi M (2015) +TUO project: low-cost 3D printers as helpful tool for small communities with rheumatic diseases. Rapid Prototyp J 21:491–505

    Article  Google Scholar 

  233. Salmi M, Tuomi J, PaloheimoKaija S et al (2012) Patient specific reconstruction with 3D modeling and DMLS additive manufacturing. Rapid Prototyp J 18:209–214

    Article  Google Scholar 

  234. Pucci JU, Christophe BR, Sisti JA, Connolly ES (2017) Three-dimensional printing: technologies, applications, and limitations in neurosurgery. Biotechnol Adv 35(5):521–529

    Article  Google Scholar 

  235. Kochan A (2000) Rapid prototyping gains speed, volume and precision. AssemAutom 20:295–299

    Google Scholar 

  236. Mallepree T, Bergers D (2009) Accuracy of medical RP models. Rapid Prototyp J 15:325–332

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Science and Technology, Govt. of India for providing the research grant under Indo-Japan Joint Bilateral Project (Project Code: DST/INT/JSPS/P-254/2017 ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Apurba Das or Arijit Sinha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wazeer, A., Das, A., Sinha, A. et al. Additive manufacturing in biomedical field: a critical review on fabrication method, materials used, applications, challenges, and future prospects. Prog Addit Manuf 8, 857–889 (2023). https://doi.org/10.1007/s40964-022-00362-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40964-022-00362-y

Keywords

Navigation