Skip to main content

Advertisement

Log in

Trends, opportunities, and challenges in the integration of the additive manufacturing with Industry 4.0

  • Review Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

The current study skims the trends, opportunities, and challenges in integrating additive manufacturing with Industry 4.0. The critical points of the existing review studies have also been discussed. The search query related to AM and Industry 4.0 was used for obtaining the information from two databases: Web of Science and Scopus. The papers were screened for duplicity and irrelevancy according to the topic of study. The bibliometric software R studio, Hiscite and Vosviewer were used for the analysis of downloaded articles. The bibliometric information related to the most-cited and productive authors, countries, sources, and universities was extracted. Lotka’s and Bradford’s law applicability to authors and sources, respectively, have been demonstrated. The interconnections between the authors, their respective countries and universities were represented with the help of three-field plot. The trend topics, keywords, and thematic evolution form the basis of a review of the cited work. The critical issues related to AM for achieving Industry 4.0 were reviewed. The insight of the case studies powering industry 4.0 was also presented. The challenges and limitations of AM’s implementation with respect to Industry 4.0 were highlighted. The conclusions were drawn out, and future scope was pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

Abbreviations

AFP:

Automatic fiber placement

AM:

Additive manufacturing

ANN:

Artificial neural networks

AR:

Augmented reality

ASTM:

American Society for Testing and Materials

ATP:

Automatic tape placement

BJ:

Binder jetting

BJP:

Binder jetting 3D printing

BMD:

Bound metal deposition

BPNN:

Back-propagation neural networks

CaaS:

Control as a service

CAD:

Computer aided design

CLIP:

Continuous liquid interface production

CNC:

Computer numerical controller

CNN:

Convolution neural network

CPPS:

Cyber-physical production system

CPS:

Cyber-physical systems

DDP:

Daylight polymer printing

DED:

Direct energy deposition

DLP:

Digital light processing

DM:

Digital manufacturing

DMLS:

Direct metal laser sintering

DOD:

Drop on demand

DOI:

Digital object identifier

EBM:

Electron beam melting

FDM:

Fused deposition modelling

FFF:

Fused filament fabrication

FPY:

First publication year

GRNN:

Generalised regression neural networks

HAM:

Hybrid additive manufacturing

IoT:

Internet of Things

IIoT:

Industrial Internet of Things

KBE:

Knowledge-based engineering

LBPF:

Laser powder bed fusion

LENS:

Laser engineered net shaping

LOM:

Laminated object manufacturing

MJ:

Material jetting

MJF:

Multi jet fusion

ML:

Machine learning

NP:

Number of publications

NPJ:

Nanoparticle jetting

SLA:

Stereolithography

SLM:

Selective laser melting

SLS:

Selective laser sintering

SM:

Subtractive manufacturing

STL:

Standard tessellation language

TC:

Total citations

UAM:

Ultrasonic additive manufacturing

References

  1. Yin Y, Stecke KE, Li D (2018) The evolution of production systems from Industry 2.0 through Industry 4.0. Int J Prod Res 56(1–2):848–861. https://doi.org/10.1080/00207543.2017.1403664

    Article  Google Scholar 

  2. Fatima S, Haleem A, Bahl S, Javaid M, Mahla SK, Singh S (2021) Exploring the significant applications of Internet of Things (IoT) with 3D printing using advanced materials in medical field. Mater Today Proc 45:4844–4851. https://doi.org/10.1016/j.matpr.2021.01.305

    Article  Google Scholar 

  3. Railroad UP (1939) Union Pacific steam locomotive 924. July 2014. [Online]. https://commons.m.wikimedia.org/wiki/File:Union_Pacific_steam_locomotive_924.JPG

  4. Dossett O (2017) 10-1. [Online]. https://www.veryableops.com/blog/the-benefits-of-shared-labor-pools

  5. Roberts M (2022) Float_Glass_Unloading. [Online]. https://mronline.org/2022/07/07/the-future-of-work-part-3-automation/

  6. A. A. I. The fourth industrial revolution, robotics, “IT 1 - Poland_v2.” 2022 [Online]. https://www.pgcareers.com/fourth-industrial-revolution

  7. Chun KW, Kim H, Lee K (2019) A study on research trends of technologies for industry 4.0; 3D printing, artificial intelligence, big data, cloud computing, and internet of things, vol 518. Springer, Singapore

    Google Scholar 

  8. Almada-Lobo F (2015) The Industry 4.0 revolution and the future of Manufacturing Execution Systems (MES). J Innov Manag 3(4):16–21. https://doi.org/10.24840/2183-0606_003.004_0003

    Article  Google Scholar 

  9. Zhang Y, Kwok TH (2018) Design and interaction interface using augmented reality for smart manufacturing. Procedia Manuf 26:1278–1286. https://doi.org/10.1016/j.promfg.2018.07.140

    Article  Google Scholar 

  10. Ivanov D, Dolgui A, Das A, Sokolov B (2019) Digital supply chain twins: managing the ripple effect, resilience, and disruption risks by data-driven optimization, simulation, and visibility, vol 276. Springer, Berlin

    Google Scholar 

  11. Olsen TL, Tomlin B (2019) Industry 4.0: opportunities and challenges for operations management. Manuf Serv Oper Manag 22(1):1–10

    Google Scholar 

  12. McCabe B (2016) ThinkstockPhotos-584865682-4-877x432. [Online]. https://www.iotworldtoday.com/2016/11/02/short-history-fourth-industrial-revolution/

  13. Information and Communication Technology. Big-data-analytics-for-I40. 2022 [Online]. https://www.environmentalengineering.org.uk/news/big-data-analytics-industry-4-0-5426/

  14. ROBOTNIK (2021) Robotnik-mobile-robots-in-industry-4. [Online]. https://robotnik.eu/mobile-robots-industry/

  15. Cyber Security as a Prerequisite for The Industry 4.0 (2017) Cyber-imagge-post 2017. [Online]. https://www.esa-automation.com/en/cyber-security-as-a-prerequisite-for-the-industry-4-0/

  16. Simulate STP. ProcessSim_4_170620_130158_1. 2022 [Online]. https://www.engusa.com/en/solution/manufacturing-process-simulation

  17. Davies A. Augmented-reality-ar-what-is-it. 2022 [Online]. https://www.devteam.space/blog/how-to-create-augmented-reality-content-for-your-business/

  18. Mathur Y (2018) “cloud comp,” 2018. [Online]. https://lucidoutsourcing.com/blog/cloud-computing

  19. Ho CH (2020) “additive_manufacturing_m9053a,” 2020. [Online]. https://new.abb.com/news/detail/56908/additive-manufacturing

  20. Team A (2021) industrial-internet-of-things-iiot-trends-2021–2022, 2021. [Online]. https://ascendle.com/ideas/the-2021-complete-guide-to-the-industrial-internet-of-things-iiot/

  21. Simakova M. systems-integration-icon-from-industry-4.0-2B6081R.” 2022 [Online]. https://www.alamy.com/systems-integration-icon-from-industry-40-collection-simple-line-element-systems-integration-symbol-for-templates-web-design-and-infographics-image347901619.html

  22. Wohlers T, Gornet T (2014) History of additive manufacturing 2014. Wohlers Rep. 2014—3D Print. Addit Manuf State Ind:1–34

  23. Hull CW (1986) Apparatus for production of three-dimensional objects by stereo thography. Patent, no. 19, p 16

  24. Kinoshita S, Konishi G, Takeuchi S, Ukai T, Taniguchi H (1990) ‘Stereovectorcardiogram’ made by stereolithography. Cardiol 77(4):269–271. https://doi.org/10.1159/000174607

    Article  Google Scholar 

  25. Deckard C (1989) Method and apparatus for producing parts by selective SNTERNG, no. 19

  26. Mireles J et al (2013) Development of a fused deposition modeling system for low melting temperature metal alloys. J Electron Packag Trans ASME 135(1):1–6. https://doi.org/10.1115/1.4007160

    Article  Google Scholar 

  27. Crump SS (1992) Apparatus and method for creating three-dimensional objects

  28. Karlsson D et al (2019) Binder jetting of the AlCoCrFeNi alloy. Addit Manuf 27(January):72–79. https://doi.org/10.1016/j.addma.2019.02.010

    Article  Google Scholar 

  29. Zhang Y, Bandyopadhyay A (2018) Direct fabrication of compositionally graded Ti-Al2 O3 multi-material structures using Laser Engineered Net Shaping. Addit Manuf 21(August 2017):104–111. https://doi.org/10.1016/j.addma.2018.03.001

    Article  Google Scholar 

  30. Atwood C et al (2018) Laser engineered net shaping (LENSTM): a tool for direct fabrication of metal parts. 1(1998):E1–E7. https://doi.org/10.2351/1.5059147

  31. Terrazas CA et al (2014) Multi-material metallic structure fabrication using electron beam melting. Int J Adv Manuf Technol 71(1–4):33–45. https://doi.org/10.1007/s00170-013-5449-0

    Article  Google Scholar 

  32. Sanz-Horta R, Elvira C, Gallardo A, Reinecke H, Rodríguez-Hernández J (2020) Fabrication of 3d-printed biodegradable porous scaffolds combining multi-material fused deposition modeling and supercritical CO2 techniques. Nanomaterials 10(6):1080. https://doi.org/10.3390/nano10061080

    Article  Google Scholar 

  33. He Y et al (2017) A tripropylene glycol diacrylate-based polymeric support ink for material jetting. Addit Manuf 16:153–161. https://doi.org/10.1016/j.addma.2017.06.001

    Article  Google Scholar 

  34. Davoodi E, Fayazfar H, Liravi F, Jabari E, Toyserkani E (2020) Drop-on-demand high-speed 3D printing of flexible milled carbon fiber/silicone composite sensors for wearable biomonitoring devices. Addit Manuf 32(November 2019):101016. https://doi.org/10.1016/j.addma.2019.101016

    Article  Google Scholar 

  35. Fayazfar H, Liravi F, Ali U, Toyserkani E (2020) Additive manufacturing of high loading concentration zirconia using high-speed drop-on-demand material jetting. Int J Adv Manuf Technol 109(9–12):2733–2746. https://doi.org/10.1007/s00170-020-05829-2

    Article  Google Scholar 

  36. Oh Y et al (2019) Microwave dielectric properties of zirconia fabricated using NanoParticle Jetting™. Addit Manuf 27(February):586–594. https://doi.org/10.1016/j.addma.2019.04.005

    Article  Google Scholar 

  37. Gong H, Snelling D, Kardel K, Carrano A (2019) Comparison of stainless steel 316L parts made by FDM- and SLM-based additive manufacturing processes. Jom 71(3):880–885. https://doi.org/10.1007/s11837-018-3207-3

    Article  Google Scholar 

  38. Sahu AK, Mahapatra SS (2020) Performance analysis of tool electrode prepared through laser sintering process during electrical discharge machining of titanium. Int J Adv Manuf Technol 106(3–4):1017–1041. https://doi.org/10.1007/s00170-019-04675-1

    Article  Google Scholar 

  39. Greiner S, Wudy K, Lanzl L, Drummer D (2017) Selective laser sintering of polymer blends: bulk properties and process behavior. Polym Test 64(July):136–144. https://doi.org/10.1016/j.polymertesting.2017.09.039

    Article  Google Scholar 

  40. Murr LE et al (2012) Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol 28(1):1–14. https://doi.org/10.1016/S1005-0302(12)60016-4

    Article  Google Scholar 

  41. Liu X et al (2022) Effect of the fibre length on the mechanical anisotropy of glass fibre–reinforced polymer composites printed by Multi Jet Fusion. Virtual Phys Prototyp 17:1–15. https://doi.org/10.1080/17452759.2022.2059638

    Article  Google Scholar 

  42. Chang B, Li X, Parandoush P, Ruan S, Shen C, Lin D (2020) Additive manufacturing of continuous carbon fiber reinforced poly-ether-ether-ketone with ultrahigh mechanical properties. Polym Test 88(April):106563. https://doi.org/10.1016/j.polymertesting.2020.106563

    Article  Google Scholar 

  43. Chang B et al (2020) Ultrafast printing of continuous fiber-reinforced thermoplastic composites with ultrahigh mechanical performance by ultrasonic-assisted laminated object manufacturing. Polym Compos 41(11):4706–4715. https://doi.org/10.1002/pc.25744

    Article  Google Scholar 

  44. Xu X et al (2020) Stereolithography (SLA) 3D printing of an antihypertensive polyprintlet: case study of an unexpected photopolymer-drug reaction. Addit Manuf 33(August 2019):101071. https://doi.org/10.1016/j.addma.2020.101071

    Article  Google Scholar 

  45. He B et al (2022) 3D printed biomimetic epithelium/stroma bilayer hydrogel implant for corneal regeneration. Bioact Mater 17(December 2021):234–247. https://doi.org/10.1016/j.bioactmat.2022.01.034

    Article  Google Scholar 

  46. He C et al (2021) Continuous fast 3D printing of SiOC ceramic components. Addit Manuf 46(May):102111. https://doi.org/10.1016/j.addma.2021.102111

    Article  Google Scholar 

  47. Kroma A, Mendak M, Jakubowicz M, Gapiński B, Popielarski P (2021) Non-contact multiscale analysis of a dpp 3d-printed injection die for investment casting. Materials (Basel) 14(22):1–19. https://doi.org/10.3390/ma14226758

    Article  Google Scholar 

  48. Chong L, Ramakrishna S, Singh S (2018) A review of digital manufacturing-based hybrid additive manufacturing processes. Int J Adv Manuf Technol 95(5–8):2281–2300. https://doi.org/10.1007/s00170-017-1345-3

    Article  Google Scholar 

  49. Craveiro F, Pinto J, Bartolo H, Jorge P (2019) Automation in Construction Additive manufacturing as an enabling technology for digital construction: a perspective on Construction 4. 0. Autom Constr 103(March):251–267. https://doi.org/10.1016/j.autcon.2019.03.011

    Article  Google Scholar 

  50. Mehrpouya M, Dehghanghadikolaei A, Fotovvati B (2019) The potential of additive manufacturing in the smart. Appl Sci 9:3865

    Article  Google Scholar 

  51. Savolainen J, Collan M (2020) How additive manufacturing technology changes business models?—review of literature. Addit Manuf 32:101070. https://doi.org/10.1016/j.addma.2020.101070

    Article  Google Scholar 

  52. Dobrzański LA, Dobrzański LB (2020) Dentistry 4.0 concept in the design and manufacturing of prosthetic dental restorations. Processes 8(5):525. https://doi.org/10.3390/PR8050525

    Article  Google Scholar 

  53. Goh GD, Sing SL, Yeong WY (2021) A review on machine learning in 3D printing: applications, potential, and challenges, vol 54(1). Springer, Netherlands

    Google Scholar 

  54. Iqbal A, Zhao G, Suhaimi H, He N, Hussain G, Zhao W (2020) Readiness of subtractive and additive manufacturing and their sustainable amalgamation from the perspective of Industry 4.0: a comprehensive review. Int J Adv Manuf Technol 111(9–10):2475–2498. https://doi.org/10.1007/s00170-020-06287-6

    Article  Google Scholar 

  55. Sepasgozar SME, Shi A, Yang L, Shirowzhan S, Edwards DJ (2020) Additive manufacturing applications for industry 4.0: a systematic critical review. Buildings 10(12):1–35. https://doi.org/10.3390/buildings10120231

    Article  Google Scholar 

  56. Omairi A, Ismail ZH (2021) Towards machine learning for error compensation in additive manufacturing. Appl Sci 11(5):1–27

    Article  Google Scholar 

  57. Gao C, Wolff S, Wang S (2021) Eco-friendly additive manufacturing of metals: energy efficiency and life cycle analysis. J Manuf Syst 60(February):459–472. https://doi.org/10.1016/j.jmsy.2021.06.011

    Article  Google Scholar 

  58. Bozkurt Y, Karayel E (2021) 3D printing technology; methods, biomedical applications, future opportunities and trends. J Mater Res Technol 14:1430–1450. https://doi.org/10.1016/j.jmrt.2021.07.050

    Article  Google Scholar 

  59. Blakey-Milner B et al (2021) Metal additive manufacturing in aerospace: a review. Mater Des 209:110008. https://doi.org/10.1016/j.matdes.2021.110008

    Article  Google Scholar 

  60. Agarwal R, Gupta V, Singh J (2022) Additive manufacturing-based design approaches and challenges for orthopaedic bone screws: a state-of-the-art review. J Braz Soc Mech Sci Eng 44(1):1–25. https://doi.org/10.1007/s40430-021-03331-8

    Article  Google Scholar 

  61. Haghnegahdar L, Joshi SS, Dahotre NB (2022) From IoT-based cloud manufacturing approach to intelligent additive manufacturing: industrial Internet of Things—an overview. Int J Adv Manuf Technol 119(3–4):1461–1478. https://doi.org/10.1007/s00170-021-08436-x

    Article  Google Scholar 

  62. Ball P (2005) Index aims for fair ranking of scientists. Nature 436(7053):900–900. https://doi.org/10.1038/436900a

    Article  Google Scholar 

  63. Parvanda R, Kala P, Sharma V (2021) bibliometric analysis-based review of fused deposition modeling 3D printing method (1994–2020). 3D Print Addit Manuf. https://doi.org/10.1089/3dp.2021.0046

    Article  Google Scholar 

  64. Alabi G (1979) Bradford’s law and its application. Int Libr Rev 11(1):151–158. https://doi.org/10.1016/0020-7837(79)90044-X

    Article  MathSciNet  Google Scholar 

  65. Ivanov D, Dolgui A, Sokolov B (2019) The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. Int J Prod Res 57(3):829–846. https://doi.org/10.1080/00207543.2018.1488086

    Article  Google Scholar 

  66. Godina R, Ribeiro I, Matos F, Ferreira BT, Carvalho H, Peças P (2020) Impact assessment of additive manufacturing on sustainable business models in industry 4.0 context. Sustain 12(17):1–21. https://doi.org/10.3390/su12177066

    Article  Google Scholar 

  67. Dilberoglu UM, Gharehpapagh B, Yaman U, Dolen M (2017) The role of additive manufacturing in the era of industry 4.0. Procedia Manuf 11(June):545–554. https://doi.org/10.1016/j.promfg.2017.07.148

    Article  Google Scholar 

  68. Gaub H (2016) Customization of mass-produced parts by combining injection molding and additive manufacturing with Industry 4.0 technologies. Reinf Plast 60(6):401–404. https://doi.org/10.1016/j.repl.2015.09.004

    Article  Google Scholar 

  69. Zawadzki P, Zywicki K (2016) Smart product design and production control for effective mass customization in the industry 4.0 concept. Manag Prod Eng Rev 7(3):105–112. https://doi.org/10.1515/mper-2016-0030

    Article  Google Scholar 

  70. Dobrzański LA, Dobrzański LB, Dobrzańska-Danikiewicz AD (2020) Additive and hybrid technologies for products manufacturing using powders of metals, their alloys and ceramics. Arch Mater Sci Eng 102(2):59–85. https://doi.org/10.5604/01.3001.0014.1525

    Article  Google Scholar 

  71. Wang B (2018) The future of manufacturing: a new perspective. Engineering 4(5):722–728. https://doi.org/10.1016/j.eng.2018.07.020

    Article  Google Scholar 

  72. Ashima R, Haleem A, Bahl S, Javaid M, Mahla SK, Singh S (2021) Automation and manufacturing of smart materials in additive manufacturing technologies using Internet of Things towards the adoption of industry 4.0. Mater Today Proc 45:5081–5088. https://doi.org/10.1016/j.matpr.2021.01.583

    Article  Google Scholar 

  73. Qin J, Liu Y, Grosvenor R (2017) A framework of energy consumption modelling for additive manufacturing using internet of things. Procedia CIRP 63:307–312. https://doi.org/10.1016/j.procir.2017.02.036

    Article  Google Scholar 

  74. D’Emilia G, Di Ilio A, Gaspari A, Natale E, Perilli R, Stamopoulos AG (2019) The role of measurement and simulation in additive manufacturing within the frame of Industry 4.0. In: 2019 IEEE Int. Work. Metrol. Ind. 4.0 IoT, MetroInd 4.0 IoT 2019—Proc., pp. 382–387. https://doi.org/10.1109/METROI4.2019.8792876

  75. Francis J, Bian L (2019) Deep learning for distortion prediction in laser-based additive manufacturing using big data. Manuf Lett 20(February):10–14. https://doi.org/10.1016/j.mfglet.2019.02.001

    Article  Google Scholar 

  76. Elhoone H, Zhang T, Anwar M, Desai S (2020) Cyber-based design for additive manufacturing using artificial neural networks for Industry 4.0. Int J Prod Res 58(9):2841–2861. https://doi.org/10.1080/00207543.2019.1671627

    Article  Google Scholar 

  77. Castro BM et al (2021) Machine learning predicts 3D printing performance of over 900 drug delivery systems. J Control Rel 337:530–545. https://doi.org/10.1016/j.jconrel.2021.07.046

    Article  Google Scholar 

  78. Wan J, Cai H, Zhou K (2015) Industrie 4.0: enabling technologies. In: Proc. 2015 Int. Conf. Intell. Comput. Internet Things, ICIT 2015, pp 135–140. https://doi.org/10.1109/ICAIOT.2015.7111555.

  79. Salama M, Elkaseer A, Saied M, Ali H, Scholz S (2019) Industrial internet of things solution for real-time monitoring of the additive manufacturing process, vol 852. Springer, Berlin

    Google Scholar 

  80. Okwudire CE, Huggi S, Supe S, Huang C, Zeng B (2018) Low-level control of 3d printers from the cloud: a step toward 3d printer control as a service. Inventions. https://doi.org/10.3390/inventions3030056

    Article  Google Scholar 

  81. Simeone A, Caggiano A, Zeng Y (2020) Smart cloud manufacturing platform for resource efficiency improvement of additive manufacturing services. Procedia CIRP 88:387–392. https://doi.org/10.1016/j.procir.2020.05.067

    Article  Google Scholar 

  82. Goguelin S, Colaco J, Dhokia V, Schaefer D (2017) Smart manufacturability analysis for digital product development. Procedia CIRP 60:56–61. https://doi.org/10.1016/j.procir.2017.02.026

    Article  Google Scholar 

  83. Ren L, Wang S, Shen Y, Hong S, Chen Y, Zhang L (2016) 3D printing in cloud manufacturing: model and platform design. In: ASME 2016 11th Int. Manuf. Sci. Eng. Conf. MSEC 2016, vol 2, pp 3–8. https://doi.org/10.1115/MSEC2016-8669.

  84. Mazur D, Paszkiewicz A, Bolanowski M, Budzik G, Oleksy M (2019) Analysis of possible SDN use in the rapid prototyping process as part of the Industry 4.0. Bull Polish Acad Sci Tech Sci 67(1):21–30. https://doi.org/10.24425/bpas.2019.127334

    Article  Google Scholar 

  85. Paszkiewicz A, Bolanowski M, Budzik G, Przeszłowski L, Oleksy M (2020) Process of creating an integrated design and manufacturing environment as part of the structure of Industry 4.0. Processes 8(9):1–21. https://doi.org/10.3390/pr8091019

    Article  Google Scholar 

  86. Nazir A, Jeng JY (2020) A high-speed additive manufacturing approach for achieving high printing speed and accuracy. Proc Inst Mech Eng Part C J Mech Eng Sci 234(14):2741–2749. https://doi.org/10.1177/0954406219861664

    Article  Google Scholar 

  87. Parmar H, Khan T, Tucci F, Umer R, Carlone P (2022) Advanced robotics and additive manufacturing of composites: towards a new era in Industry 4.0. Mater Manuf Process 37(5):483–517. https://doi.org/10.1080/10426914.2020.1866195

    Article  Google Scholar 

  88. Turner C et al (2019) Sustainable production in a circular economy: a business model for re-distributed manufacturing. Sustain 11(16):1–19. https://doi.org/10.3390/su11164291

    Article  Google Scholar 

  89. Nascimento DLM et al (2019) Exploring Industry 4.0 technologies to enable circular economy practices in a manufacturing context: a business model proposal. J Manuf Technol Manag 30(3):607–627. https://doi.org/10.1108/JMTM-03-2018-0071

    Article  Google Scholar 

  90. Dev NK, Shankar R, Qaiser FH (2020) Industry 4.0 and circular economy: operational excellence for sustainable reverse supply chain performance. Resour Conserv Recycl 153(19):104583. https://doi.org/10.1016/j.resconrec.2019.104583

    Article  Google Scholar 

  91. Tang CS, Veelenturf LP (2019) The strategic role of logistics in the industry 4.0 era. Transp Res Part E Logist Transp Rev 129(June):1–11. https://doi.org/10.1016/j.tre.2019.06.004

    Article  Google Scholar 

  92. Galantucci LM, Guerra MG, Dassisti M, Lavecchia F (2019) Additive manufacturing: new trends in the 4th industrial revolution. Springer, Berlin

    Google Scholar 

  93. Chiarini A (2021) Industry 4.0 technologies in the manufacturing sector: are we sure they are all relevant for environmental performance? Bus Strateg Environ 30(7):3194–3207. https://doi.org/10.1002/bse.2797

    Article  Google Scholar 

  94. Ceruti A, Marzocca P, Liverani A, Bil C (2019) Maintenance in aeronautics in an Industry 4.0 context: the role of augmented reality and additive manufacturing. J Comput Des Eng 6(4):516–526. https://doi.org/10.1016/j.jcde.2019.02.001

    Article  Google Scholar 

  95. Nieto DM, López VC, Molina SI (2018) Large-format polymeric pellet-based additive manufacturing for the naval industry. Addit Manuf 23:79–85. https://doi.org/10.1016/j.addma.2018.07.012

    Article  Google Scholar 

  96. Qin J, Liu Y, Grosvenor R (2017) Data analytics for energy consumption of digital manufacturing system using internet of things method. In: 13th IEEE conference on automation science and engineering (CASE) Xi’an, China, pp 482–487

  97. Avventuroso G, Foresti R, Silvestri M, Frazzon EM (2018) Production paradigms for additive manufacturing systems: a simulation-based analysis. In: 2017 Int. Conf. Eng. Technol. Innov. Eng. Technol. Innov. Manag. Beyond 2020 New Challenges, New Approaches, ICE/ITMC 2017—Proc., vol. 2018-Janua, pp 973–981. https://doi.org/10.1109/ICE.2017.8279987

  98. Segonds F (2018) Design by additive manufacturing: an application in aeronautics and defence. Virtual Phys Prototyp 13(4):237–245. https://doi.org/10.1080/17452759.2018.1498660

    Article  Google Scholar 

  99. Saxena P, Papanikolaou M, Pagone E, Salonitis K, Jolly MR (2020) Digital manufacturing for foundries 4.0. Light Metals 2020:1019–1025

    Google Scholar 

  100. Ituarte IF et al (2018) Digital manufacturing applicability of a laser sintered component for automotive industry: a case study. Rapid Prototyp J 24(7):1203–1211. https://doi.org/10.1108/RPJ-11-2017-0238

    Article  Google Scholar 

  101. Cohen Y, Faccio M, Pilati F, Yao X (2019) Design and management of digital manufacturing and assembly systems in the Industry 4.0 era. Int J Adv Manuf Technol 105(9):3565–3577. https://doi.org/10.1007/s00170-019-04595-0

    Article  Google Scholar 

  102. Kalita SJ, Bose S, Hosick HL, Bandyopadhyay A (2003) Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling. Mater Sci Eng C 23(5):611–620. https://doi.org/10.1016/S0928-4931(03)00052-3

    Article  Google Scholar 

  103. Lei L, Yao Z, Zhou J, Wei B, Fan H (2020) 3D printing of carbon black/polypropylene composites with excellent microwave absorption performance. Compos Sci Technol 200(June):108479. https://doi.org/10.1016/j.compscitech.2020.108479

    Article  Google Scholar 

  104. Vu MC, Jeong TH, Kim JB, Choi WK, Kim DH, Kim SR (2020) 3D printing of copper particles and poly(methyl methacrylate) beads containing poly(lactic acid) composites for enhancing thermomechanical properties. J Appl Polym Sci 138(5):1–10. https://doi.org/10.1002/app.49776

    Article  Google Scholar 

  105. Mireles J, Espalin D, Roberson D, Zinniel B, Medina F, Wicker R (2012) Fused deposition modeling of metals. In: 23rd Annu. Int. Solid Free. Fabr. Symp.—an Addit. Manuf. Conf. SFF 2012, pp 836–845

  106. Parvanda R, Kala P (2022) “Process window identification for 3D printing low melting point alloy (LMPA) using fused deposition modelling (FDM). Rapid Prototyp J. https://doi.org/10.1108/RPJ-04-2022-0103

    Article  Google Scholar 

  107. Chen J, Yang Y, Song C, Zhang M, Wu S, Wang D (2019) Interfacial microstructure and mechanical properties of 316L /CuSn10 multi-material bimetallic structure fabricated by selective laser melting. Mater Sci Eng A 752(January):75–85. https://doi.org/10.1016/j.msea.2019.02.097

    Article  Google Scholar 

  108. Zhang M, Yang Y, Wang D, Song C, Chen J (2019) Microstructure and mechanical properties of CuSn/18Ni300 bimetallic porous structures manufactured by selective laser melting. Mater Des 165:107583. https://doi.org/10.1016/j.matdes.2019.107583

    Article  Google Scholar 

  109. Sarswat PK, Sarkar S, Murali A, Huang W, Tan W, Free ML (2022) Design, fabrication and evaluation of Fe–Mn–Mo–Zr–Ti–V–B type additive manufactured mixed metal boride ceramics. Appl Surf Sci Adv 9(March):100247. https://doi.org/10.1016/j.apsadv.2022.100247

    Article  Google Scholar 

  110. Lakhdar Y, Tuck C, Binner J, Terry A, Goodridge R (2021) Additive manufacturing of advanced ceramic materials. Prog Mater Sci 116(20):100736. https://doi.org/10.1016/j.pmatsci.2020.100736

    Article  Google Scholar 

  111. Cramer CL et al (2022) Additive manufacturing of ceramic materials for energy applications: road map and opportunities, vol 42. Elsevier Ltd, Oxford

    Google Scholar 

  112. Tiismus H, Kallaste A, Belahcen A, Rassolkin A, Vaimann T (2019) Challenges of additive manufacturing of electrical machines. In: Proc. 2019 IEEE 12th Int. Symp. Diagnostics Electr. Mach. Power Electron. Drives, SDEMPED 2019, pp. 44–48. https://doi.org/10.1109/DEMPED.2019.8864850.

  113. Dalmarco G, Ramalho FR, Barros AC, Soares AL (2019) Providing industry 4.0 technologies: the case of a production technology cluster. J High Technol Manag Res 30(2):100355. https://doi.org/10.1016/j.hitech.2019.100355

    Article  Google Scholar 

  114. Onik MMH, Kim CS, Yang J (2019) Personal data privacy challenges of the fourth industrial revolution. In: Int. Conf. Adv. Commun. Technol. ICACT, vol. 2019-Febru, pp 635–638. https://doi.org/10.23919/ICACT.2019.8701932

  115. Saxena P, Papanikolaou M, Pagone E, Salonitis K, Jolly MR (2020) Digital manufacturing for foundries 4.0. Springer, Cham

    Book  Google Scholar 

Download references

Acknowledgements

We are thankful to India's science and engineering research board (SERB), India, for funding the current study.

Funding

The work was supported by the Science and Engineering Research Board (SERB). Grant no. (CRG/2019/001320).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prateek Kala.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical statement

We ensure the originality of the article, and it is not submitted to any other journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parvanda, R., Kala, P. Trends, opportunities, and challenges in the integration of the additive manufacturing with Industry 4.0. Prog Addit Manuf 8, 587–614 (2023). https://doi.org/10.1007/s40964-022-00351-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40964-022-00351-1

Keywords

Navigation