Skip to main content

Advertisement

Log in

Fatigue Properties and Simulation of Thin Wall ADI and IADI Castings

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In this study, microstructure and mechanical properties of thin wall austempered and intercritically austempered ductile iron with a chemical composition of 3.37%C, 2.7%Si, 0.30%Mn, 0.01%S, 0.01%P, 0.47%Cu, and 0.0371%Mg were investigated. Thin ductile iron samples with different thicknesses of 5, 10, and 15 mm were cast and then heat treated with two different austempering techniques. The first sample was austenitizing below upper critical temperature at 810 °C for an hour and then rapidly quenched in a salt bath at 375 °C and held for 1 h (IADI). The second treatment was carried out at austenitizing temperature of 900 °C, which was above upper critical temperature, for an hour and then rapidly quenched in a salt bath at 375 °C for 1 h (ADI). The mechanical properties of the austempered and intercritically austempered thin wall samples were evaluated and compared to the as-cast samples. The fatigue properties of all samples were simulated using ANSYS software, and the best condition was experimentally tested using plane bending fatigue testing machine. Maximum ultimate strength (1056) MPa and hardness (396 HV) were obtained for 5 mm ADI sample. Maximum impact toughness (43 J) was achieved for 15 mm IADI sample due to existing proeutectoid ferrite in matrix. Maximum simulated fatigue strength (435 MPa) was reported for 5-mm ADI sample and minimum simulated fatigue strength (160 MPa) was registered for as-cast DI sample. For both ADI and IADI castings, fatigue strength decreased with increasing sample thickness. For 10-mm ADI sample, the simulated fatigue strength was (407 MPa) which was close to the experimental result (417 MPa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23

Similar content being viewed by others

References

  1. A. Uyar, O. Sahin, B. Nalcaci et al., Effect of austempering times on the microstructures and mechanical properties of Dual-Matrix Structure Austempered Ductile Iron (DMS-ADI). Inter. Metalcast (2021). https://doi.org/10.1007/s40962-021-00617-4

    Article  Google Scholar 

  2. W.L. Guesser, C.L. Lopes, P.A.N. Bernardini, Austempered ductile iron with dual microstructures: effect of initial microstructure on the austenitizing process. Inter. Metalcast 14, 717–727 (2020). https://doi.org/10.1007/s40962-019-00397-y

    Article  CAS  Google Scholar 

  3. M. Soliman, A. Nofal, H. Palkowski, Effect of thermo-mechanical processing on structure and properties of dual-phase matrix ADI with different Si-contents. Inter. Metalcast 14, 853–860 (2020). https://doi.org/10.1007/s40962-020-00477-4

    Article  CAS  Google Scholar 

  4. G. Artola, I. Gallastegi, J. Izaga et al., Austempered Ductile Iron (ADI) alternative material for high-performance applications. Inter. Metalcast 11, 131–135 (2017). https://doi.org/10.1007/s40962-016-0085-8

    Article  Google Scholar 

  5. Y. Kim, H. Shin, H. Park, J.D. Lim, Investigation into mechanical properties of austempered ductile cast iron ( ADI ) in accordance with austempering temperature. Mater. Lett. 62, 357–360 (2008). https://doi.org/10.1016/j.matlet.2007.05.028

    Article  CAS  Google Scholar 

  6. K.M. Ibrahim, B. El-sarnagawy, I.I. Saleh, Effect of notch severity on fatigue behaviour of ADI castings. Mater. Sci. Appl. 04, 109–117 (2013). https://doi.org/10.4236/msa.2013.42012

    Article  CAS  Google Scholar 

  7. H.D. Machado, R. Aristizabal-Sierra, C. Garcia-Mateo et al., Effect of the starting microstructure in the formation of austenite at the intercritical range in ductile iron alloyed with Nickel and Copper. Inter. Metalcast 14, 836–845 (2020). https://doi.org/10.1007/s40962-020-00450-1

    Article  CAS  Google Scholar 

  8. R.B. Gundlach, Heat treatments to develop high-strength ferritic ductile Iron. Inter. Metalcast 14, 1065–1077 (2020). https://doi.org/10.1007/s40962-020-00489-0

    Article  CAS  Google Scholar 

  9. D. Handayani, R. C. Voigt, K. Hayrynen. Understanding the machinability of austempered ductile iron (ADI). Mater. Sci. Forum 925: 311–317 (2018). https://doi.org/10.4028/www.scientific.net/MSF.925.311

  10. R. D. Sulamet-Ariobimo et al. The effects of austenitizing process to mechanical properties of thin wall ductile iron connecting rod. AIP Conf. Proc. 2262, (2020). https://doi.org/10.1063/1.1420771

  11. K.M. Ibrahim, Y. Fouad, Effect of cast wall thickness, composition and austempering temperature on microstructure and properties of ductile cast iron. Int. J. Cast Met. Res. (2013). https://doi.org/10.1179/1743133613Y.0000000056

    Article  Google Scholar 

  12. J. Shah, Light-weighting technologies for high-performance ductile iron sand castings. Inter. Metalcast 14, 656–662 (2020). https://doi.org/10.1007/s40962-020-00423-4

    Article  CAS  Google Scholar 

  13. R.A. Martinez, R.E. Boeri and J.A. Sikora. Application of ADI in High Strength Thin Wall. The 2002 World Conference on Austempered Ductile Iron (ADI), co-sponsored by the Ductile iron society and the American foundry society, conference proceedings, pp. 143–148, Louisville, Kentucky, USA 2002

  14. C. Labrecque, M. Gagné, A. Jarid, Optimizing the mechanical properties of thin wall ductile iron castings. AFS Trans. 113, 677–686 (2005)

    CAS  Google Scholar 

  15. M.M. Mourad, K.M. Ibrahim, M.M. Ibrahim, and A.A. Nofal. Optimizing the properties of thin wall Austempered Ductile iron, 68th World Foundry Congress (WFC), pp. 161–166, Chennai, India 2008

  16. R. Upadhyaya, K.K. Singh, R. Kumar, M. Sharanchandran, Study on the effect of austempering temperature on the structure-properties of thin wall austempered ductile iron. Mater. Today: Proceedings 5, 13472–13477 (2018). https://doi.org/10.1016/j.matpr.2018.02.342

    Article  CAS  Google Scholar 

  17. J.C. Pang, S.X. Li, Z.G. Wang, Z.F. Zhang, General relation between tensile strength and fatigue strength of metallic materials. Mater. Sci. Eng. A 564, 331–341 (2013). https://doi.org/10.1016/j.msea.2012.11.103

    Article  CAS  Google Scholar 

  18. N. Chvorinov, Theorie Der Erstarrung von Gussstücken (Giesserei, Germany, 1940)

    Google Scholar 

  19. L. Mccusker, L. Mccusker, D.R. Cox, D. Louër, P. Scardi, Rietveld Refinement Guidelines. J. Appl. Crystallogr. 32, 36–50 (1999)

    Article  CAS  Google Scholar 

  20. M. Yescas, “Modelling the microstructure and mechanical properties of austempered ductile iron,” Ph.D. Thesis, Department of Materials Science and Metallurgy, Cambridge, UK, 2002

  21. A.M. Negm, S.A. Abdallah, T.S. Mahmoud, M. Ibrahim, Cooling slope casting of cast iron. Mat.-wiss. u Werkstofftech 48, 1103–1112 (2017). https://doi.org/10.1002/mawe.201600753

    Article  Google Scholar 

  22. L. St-Pierre, E. Héripré, M. Dexet, J. Crépin, G. Bertolino, N. Bilger, 3D simulations of microstructure and comparison with experimental microstructure coming from OIM analysis. Int. J. Plast. 24, 1516–1532 (2008). https://doi.org/10.1016/j.ijplas.2007.10.004

    Article  CAS  Google Scholar 

  23. M. Eto, T. Arai, and T. Konishi. The fatigue strength of graphite and carbon materials for HTTR core components. JAERI-Research 98–024, (1998)

  24. M. Abareshi, E. Emadoddin, Effect of retained austenite characteristics on fatigue behavior and tensile properties of transformation induced plasticity steel. Mater. Des. 32, 5099–5105 (2011). https://doi.org/10.1016/j.matdes.2011.06.018

    Article  CAS  Google Scholar 

  25. C. Garcia-Mateo, F. G. Caballero, and H. K. D. H. Bhadeshia. Mechanical properties of low-temperature bainite. Mater. Sci. Forum 500–501, 495–502 (2005). https://doi.org/10.4028/www.scientific.net/MSF.500-501.495

  26. K. M. Ibrahim, “Effect of Molybdenium and Nickel Additions on Microstructure and Mechanical properties of the A-cast Austempered Ductile Iron,” Ph.D. Thesis, fakultat fur prozesswissenschaften der technischen, Berlin–Germany, 2000

  27. M. Go´rny, E. Tyrała, Effect of cooling rate on microstructure and mechanical properties of thin-walled ductile iron castings. J. Mater. Eng. Perform. 22, 300–305 (2013). https://doi.org/10.1007/s11665-012-0233-0

    Article  CAS  Google Scholar 

  28. G. Coopert, A. Roebuck, H. Bayati, R. Elliot, The influence of nodule count on the austempering kinetics of a Mn–Cu ductile iron. Int. J. Cast Metals Res. 11, 227–235 (1999). https://doi.org/10.1080/13640461.1999.11819279

    Article  Google Scholar 

  29. J.M. Massone, R.E. Boeri, J.A. Sikora, Solid state transformation kinetics of high nodule count ductile iron. Int. J. Cast Metals Res. 16, 179–184 (2003). https://doi.org/10.1080/13640461.2003.11819579

    Article  CAS  Google Scholar 

  30. D.O. Fernandino, R. Boeri, Fractographic analysis of austempered ductile iron. Fatigue Fract. Eng. Mater. Struct. 39, 583–598 (2015). https://doi.org/10.1111/ffe.12380

    Article  Google Scholar 

  31. M.D. Chapetti, High-cycle fatigue of austempered ductile iron (ADI). Int. J. Fatigue 29, 860–868 (2007). https://doi.org/10.1016/j.ijfatigue.2006.09.005

    Article  CAS  Google Scholar 

  32. L. Bubenko, R. Konečná, G. Nicoletto, Observation of fatigue crack paths in nodular cast iron and ADI microstructures. Mater. Eng. 16, 13–18 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled M. Ibrahim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, M.M., Negm, A.M., Mohamed, S.S. et al. Fatigue Properties and Simulation of Thin Wall ADI and IADI Castings. Inter Metalcast 16, 1693–1708 (2022). https://doi.org/10.1007/s40962-021-00711-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00711-7

Keywords

Navigation