Skip to main content
Log in

Study of Electrochemical Corrosion in Samples of a Horizontally Solidified AlCuSi Alloy

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

A Correction to this article was published on 04 April 2023

This article has been updated

Abstract

Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and microstructure characterization were performed on directionally solidified samples of the Al–3Cu–2Si alloy in order to study their corrosion behavior in a 0.2 M HCl electrolyte. Corrosion resistance of the investigated samples was correlated with solidification parameters, such as growth (VL), cooling rates (TR) and secondary dendritic spacing (λ2). Optical microscopy was used to characterize both the as-cast and corroded microstructures. For an immersion time of 24 hours in acidic solution, optical micrographs indicated that Si addition to Al-3Cu alloy promoted a significant decrease in the average fractions of α-Al phase increasing anodic activity of the Al-3Cu-2Si alloy. Using Tafel extrapolation, it is shown that the secondary dendritic arm spacing (λ2) acts as a factor influencing the corrosion current density (Icorr). All the EIS diagrams reveal a unique capacitive time constant and the size of the semi-circle decreases with increasing the time of immersion. Nyquist plots demonstrate that higher λ2 values cause a decrease in resistance of polarization, indicating the presence of a very thin film of aluminum oxide associated with a lower corrosion resistance.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Change history

References

  1. L. Jin, K. Liu, X. G. Chen, Evolution of dispersoids and their effects on elevated-temperature strength and creep resistance in Al-Si-Cu 319 cast alloys with Mn and Mo additions. Mater. Sci. Eng., A. 770, 138554 (2020). https://doi.org/10.1016/j.msea.2019.138554.

  2. G.K. Sigworth, The Corrosion of Al–Cu-Based Alloys and Comments on the Paper “Effect of Solidification Time on Microstructure, Wettability and Corrosion Properties of A205-T7 Aluminum Alloys” by Amir Kordijazi et al. Inter Metalcast.15, 13–16 (2020). https://doi.org/10.1007/s40962-020-00475-6

  3. M.G. Akhil, S. Preenu, S. Hari, M. Ravi, Effect of heat treatment on the mechanical properties of squeeze-cast Al–5Si–3Cu alloy for automotive applications. Trans. Indian Inst. Met. 72, 1129–1132 (2019). https://doi.org/10.1007/s12666-019-01562-x

    Article  CAS  Google Scholar 

  4. J. Esquivel, R.K. Gupta, Corrosion-Resistant Metastable Al alloys: An overview of corrosion mechanisms. J. Electrochem. Soc. 167(8), 081504 (2020). https://doi.org/10.1149/1945-7111/ab8a97

    Article  CAS  Google Scholar 

  5. S. El-Hadad, M.E. Moussa, M. Waly, Effects of Alloying with Sn and Mg on the Microstructure and Electrochemical Behavior of Cast Aluminum Sacrificial Anodes. Inter. Metalcast. 15, 548–565 (2021). https://doi.org/10.1007/s40962-020-00483-6

    Article  CAS  Google Scholar 

  6. J. Scepanovic, V. Asanovic, S. Herenda, D. Vuksanovic, D. Radonjic, F. Korac, Microstructural Characteristics, Mechanical Properties, Fracture Analysis and Corrosion Behaviorof Hypereutectic Al–13.5Si Alloy. Inter.Metalcast.13, 700–714 (2019). https://doi.org/10.1007/s40962-019-00315-2.

  7. E. Noor, Evaluation of inhibitive action of some quaternary N-heterocyclic compounds on he corrosion of Al–Cu alloy in hydrochloricacid. Mater. Chem. Phys. 114(2–3), 533–541 (2009). https://doi.org/10.1016/j.matchemphys.2008.09.065

    Article  CAS  Google Scholar 

  8. J. Talati, D. Gandhi, N-heterocyclic compounds as corrosion inhibitors for aluminium-copper alloy in hydrochloric acid. Corros. Sci. 23(12), 1315–1332 (1983). https://doi.org/10.1016/0010-938X(83)90081-1

    Article  CAS  Google Scholar 

  9. H. Santos, F. Reis, C. Kunioshi, J. Rossi, I. Costa, Corrosion performance of Al-Si-Cu hypereutectic alloys in a synthetic condensed automotive solution. Mater. Res. 8(2), 155–159 (2005). https://doi.org/10.1590/S1516-14392005000200011

    Article  CAS  Google Scholar 

  10. W.R. Osório, L.C. Peixoto, D.J. Moutinho, L.G. Gomes, I.L. Ferreira, A. Garcia, Corrosion resistance of directionally solidified Al–6Cu–1Si and Al–8Cu–3Si alloys castings. Mater. Des. 32(7), 3832–3837 (2011). https://doi.org/10.1016/j.matdes.2011.03.013

    Article  CAS  Google Scholar 

  11. N. Birbilis, R.G. Buchheit, Electrochemical characteristics of intermetallic phases in Aluminum Alloys: an experimental survey and discussion. J. Electrochem. Soc. 152, B140 (2005). https://doi.org/10.1149/1.1869984

    Article  CAS  Google Scholar 

  12. J. Li, J. Dang, A summary of corrosion properties of Al-Rich solid solution and secondary phase particles in Al alloys. Metals. 7(3), 84 (2017). https://doi.org/10.3390/met7030084

    Article  CAS  Google Scholar 

  13. Z. Szklarska-Smialowska, Pitting corrosion of aluminum. Corros. Sci. 41(9), 1743–1767 (1999). https://doi.org/10.1016/S0010-938X(99)00012-8

    Article  CAS  Google Scholar 

  14. K.M. Fleming, A. Zhu, J.R. Scully, Corrosion of AA6061 brazed with an Al-Si Alloy: Effects of Si on metallurgical and corrosion behavior. Corrosion 68(12), 1126–1145 (2012). https://doi.org/10.5006/0677

    Article  CAS  Google Scholar 

  15. G. Svenningsen, M.H. Larsen, J.C. Walmsley, J.H. Nordlien, K. Nisancioglu, Effect of artificial aging on intergranular corrosion of extruded AlMgSi alloy with small Cu content. Corros. Sci. 48(6), 1528–1543 (2006)

    Article  CAS  Google Scholar 

  16. A. Kordijazi, S. Behera, S. Suri, Z. Wang, M. Povolo, N. Salowitz, P. Rohatgi, Data-driven modeling of wetting angle and corrosion resistance of hypereutectic cast Aluminum-Silicon alloys based on physical and chemical properties of surface. Surf. Interfaces. 20, 100549 (2020). https://doi.org/10.1016/j.surfin.2020.100549

    Article  CAS  Google Scholar 

  17. F.L. Zeng, Z.L. Wei, J.F. Li, C.X. Li, X. Tan, Z. Zhang, Z.Q. Zheng, Corrosion mechanism associated with Mg2Si and Si particles in Al–Mg–Si alloys. Trans. Nonferrous Met. Soc. China. 21(12), 2559–2567 (2011). https://doi.org/10.1016/S1003-6326(11)61092-3

    Article  CAS  Google Scholar 

  18. K. Mizuno, A. Nylund, I. Olefjord, Surface reactions during pickling of an aluminium–magnesium–silicon alloy in phosphoric acid. Corros. Sci. 43(2), 381–396 (2001). https://doi.org/10.1016/S0010-938X(00)00069-X

    Article  CAS  Google Scholar 

  19. M.H. Larsen, J.C. Walmsley, O. Lunder, K. Nisancioglu, Effect of Excess silicon and small copper content on intergranular corrosion of 6000-series aluminum alloys. J. Electrochem. Soc. 157(2), C61 (2010). https://doi.org/10.1149/1.3261804

    Article  CAS  Google Scholar 

  20. S.K. Kairy, N. Birbilis, Clarifying the role of Mg2Si and Si in localized corrosion of aluminum alloys by quasi in situ transmission electron microscopy. Corrosion 76(5), 464–475 (2020). https://doi.org/10.5006/3457

    Article  CAS  Google Scholar 

  21. Y. Zou, H. Yan, Z. Hu, Q. Ran, Effect of (Pr + Ce) addition and T6 heat treatment on microhardness and corrosión of AlSi5Cu1Mg alloy. Mater. Res. Express. 7(2), 026526 (2020). https://doi.org/10.1088/2053-1591/ab6fa7

    Article  CAS  Google Scholar 

  22. A. Barros, C. Cruz, A. P. Silva, N. Cheung, A. Garcia, O. Rocha, A. Moreira, HorizontallySolidified Al–3 wt%Cu–(0.5 wt%Mg) Alloys: TailoringT hermal Parameters, Microstructure, Microhardness, and Corrosion Behavior. Acta Metall. Sin. (Engl. Lett.). 32, 695-709 (2019). https://doi.org/10.1007/s40195-018-0852-z.

  23. D.L. Soares, A.S. Barros, M. Dias, A.L. Moreira, J.C. Filho, A.P. Silva, O.L. Rocha, The role of therma land microstructural parameters on corrosion resistance of unsteady-state horizontally solidified Aluminum-Copper hypoeutectic alloys. Int. J. Electrochem. Sci.12, 413-428 (2017). https://doi.org/10.20964/2017.01.63.

  24. S. Zor, M. Zeren, H. Ozkazanc, E. Karakulak, Effect of Cu content on the corrosion of Al-Si eutectic alloys in acidic solutions. Anti-Corros. Methods Mater. 57(4), 185–191 (2010). https://doi.org/10.1108/00035591011058192

    Article  CAS  Google Scholar 

  25. C. Cruz, T. Lima, M. Soares, E. Freitas, E. Fujiwara, A. Garcia, N. Cheungt, Effect of Microstructure Features on the Corrosion Behavior of the Sn-2.1 wt%Mg Solde rAlloy. Electron. Mater. Lett. 16, 276–292 (2020). https://doi.org/10.1007/s13391-020-00202-7.

  26. P.S. Kumar, V. Kavimani, K.S. Prakash, V.M. Krishna, G.S. Kumar, Effectof TiB2 on the corrosion resistance behavior of In situ Al composites. Inter Metalcast. 14, 84–91 (2020). https://doi.org/10.1007/s40962-019-00330-3

    Article  CAS  Google Scholar 

  27. A. Kordijazi, D. Weiss, S. Das, S. Behera, H.M. Roshan, P. Rohatgi, Effectof solidification time on microstructure, wettability, and corrosion properties of A205–T7 aluminum alloys. Inter Metalcast. 15, 2–12 (2021). https://doi.org/10.1007/s40962-020-00457-8

    Article  CAS  Google Scholar 

  28. T. Dorin, N. Stanford, N. Birbilis, R.K. Gupta, Influence of cooling rate on the microstructure and corrosion behavior of Al–Fe alloys. Corros. Sci. 100, 396–403 (2015). https://doi.org/10.1016/j.corsci.2015.08.017

    Article  CAS  Google Scholar 

  29. A.V. Rodrigues, T.S. Lima, T.A. Vida, C. Brito, A. Garcia, N. Cheung, Microstructure and tensile/corrosion properties relationships of directionally solidified Al–Cu–Ni alloys. Met. Mater. Int. 24, 1058–1076 (2018). https://doi.org/10.1007/s12540-018-0116-5

    Article  CAS  Google Scholar 

  30. W.R. Osório, E.S. Freitas, A. Garcia, Corrosion performance basedonthe microstructura lArray of Al-based monotectic alloys in a NaCl solution. J. Mater. Eng. Perform. 23, 333–341 (2014). https://doi.org/10.1007/s11665-013-0741-6

    Article  CAS  Google Scholar 

  31. C. Brito, T. Vida, E. Freitas, N. Cheung, J.E. Spinelli, A. Garcia, Cellular/dendritic arrays and intermetallic phases affecting corrosion and mechanical resistances of an Al–Mg–Si alloy. J. Alloys Compd. 673, 220–230 (2016). https://doi.org/10.1016/j.jallcom.2016.02.161

    Article  CAS  Google Scholar 

  32. A. Barros, C. Cruz, A.P. Silva, N. Cheung, A. Garcia, O. Rocha, A. Moreira, Length scale of solidification microstructure tailoring corrosion resistance and microhardness in T6 heattreatmentof an Al–Cu–Mg alloy. Corros. Eng. Sci. Technol. 55(6), 471–479 (2020). https://doi.org/10.1080/1478422X.2020.1742410

    Article  CAS  Google Scholar 

  33. T. Soares, C. Cruz, A. Barros, A. Garcia, N. Cheung, Microstructure growth morphologies, macrosegregation, and microhardness in Bi–Sb thermal interface alloys. Adv. Eng. Mater. 22(6), 1901592 (2020). https://doi.org/10.1002/adem.201901592

    Article  CAS  Google Scholar 

  34. C. Puncreobutr, P.D. Lee, K.M. Kareh, T. Connolley, J.L. Fife, A.B. Phillion, Influence of Fe-rich intermetallics on solidification defects in Al–Si–Cu alloys. Acta Mater. 68, 42–51 (2014). https://doi.org/10.1016/j.actamat.2014.01.007

    Article  CAS  Google Scholar 

  35. M.G.C. Xavier, T.M.G. Souza, N. Cheung, A. Garcia, J.E. Spinelli, Effects of cobalt and solidification cooling rate on intermetallic phases and tensile properties of a -Cu, -Zn,-Fe containing Al-Si alloy. Int. J. Adv. Manuf. Technol. 107, 717–730 (2020). https://doi.org/10.1007/s00170-020-05077-4

    Article  Google Scholar 

  36. F. Souza, J. Lima, C. Rizziolli, I. Magno, A. Barros, A. Moreira, O. Rocha, Microstructure and microhardness in horizontally solidified Al–7Si–0.15Fe–(3Cu; 0.3Mg) alloys Mater. Sci. Technol. 34(10), 1252–1264 (2018). https://doi.org/10.1080/02670836.2018.1444923.

  37. M.O. Costa, C.R. Barbosa, H.M. Azevedo, G.H. Machado, F.S. Rocha, A.S. Moreira, O.L. Rocha, Thermal analysis via horizontal solidification of Al3Cu2Si (mass%) alloy: thermal and microstructural parameters, intermetallic compounds and microhardness. J. Therm. Anal. Calorim. (2021). https://doi.org/10.1007/s10973-020-10419-1

    Article  Google Scholar 

  38. S. Wolynec, Electrochemical Corrosion Techniques, vol. 1 (Edusp, São Paulo, 2003), pp. 45-62.

  39. C.R. Barbosa, T.C. Silva, H.M. Azevedo, J.C. Filho, A.S. Moreira, O.L. Rocha, Correlation between unsteady-state solidification and electrochemical corrosion parameters of na AlSiMg alloy. Inter. Metalcast. (2021). https://doi.org/10.1007/s40962-021-00571-1

    Article  Google Scholar 

  40. A.I. Muñoz, S. Mischler, Interactive effects of Al buminand Phosphate ionson the corrosion of CoCrMo implant alloy. J. Electrochem. Soc. 154, C562 (2007). https://doi.org/10.1149/1.2764238

    Article  CAS  Google Scholar 

  41. B. Coates, S.A. Argyropoulos, The effects of surface roughnessand metal temperature on the heat-transfer coefficient at the metal mold interface. Metall. Mater. Trans. B. 38(2), 243–255 (2007). https://doi.org/10.1007/s11663-007-9020-y

    Article  CAS  Google Scholar 

  42. Z.P. Guo, S.M. Xiong, B.C. Liu, M. Li, J. Allison, Effect of process parameters, casting thickness, and alloys on the interfacial heat-transfer coefficient in the high-pressure die-casting process. Metall. Mater. Trans. A. 39(12), 2896 (2008). https://doi.org/10.1007/s11661-008-9640-0

  43. K.A. Yasakau, M.L. Zheludkevich, S.V. Lamaka, M.G.S. Ferreira, Role of intermetallic phases in localized corrosion of AA5083. Electromic. Act. 52(27), 7651–7659 (2007). https://doi.org/10.1016/j.electacta.2006.12.072

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by UFPA - Federal University ofPará, PPGEM/ITEC/UFPA - Postgraduate Program in Mechanical Engineering, FEQ/ITEC/UFPA - Faculty of Chemical Engineering, IFPA - Federal Institute of Education, Science and Technology of Pará, PPGEMat/IFPA - Postgraduate Program in Materials Engineering, and CNPq - National Council for Scientific and Technological Development (Grants 302846/2017-4 and 304924/2020-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José C. Filho.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Otavio L. Rocha was added as an author.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, T.C., Barros, A.S., Filho, J.C. et al. Study of Electrochemical Corrosion in Samples of a Horizontally Solidified AlCuSi Alloy. Inter Metalcast 16, 1191–1205 (2022). https://doi.org/10.1007/s40962-021-00657-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00657-w

Keywords

Navigation