Skip to main content

Advertisement

Log in

Response of Varying Levels of Silicon and Transition Elements on Room- and Elevated-Temperature Tensile Properties in an Al–Cu Alloy

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The research involved here was accomplished through a study of the tensile properties in both the as-cast and heat-treated conditions, where the effects of different heat treatments, i.e., T5, T6, T62 and T7, commonly applied to aluminum casting alloys were evaluated at ambient temperature and at high temperature (250 °C) using different holding or stabilization times at testing temperature. The tensile data showed that the ultimate tensile strength (UTS) and percentage elongation values of the six alloys increased in the one-step solution heat-treated condition compared to the as-cast case. The multi-step solution heat treatment displayed higher tensile properties than those achieved with the one-step solution treatment. The use of the T62 treatment (multi-step solution treatment followed by artificial aging) allows for maximum dissolution of the copper phases in the multiple stages of solution treatment, resulting in the greatest improvement in both UTS and yield strength (YS). At ambient temperature, T6 and T62 treatments provide the best improvements in both UTS and YS values of all alloys. The T62-tempered alloy showed maximum improvement with a UTS value of ~ 401.55 MPa. Likewise, in the Al–2%Cu–8%Si series the T62-tempered alloy displayed the highest UTS with a value of ~ 293.5 MPa. The YS values improved overall after solution treatment. The YS values followed the same trend as the UTS at both ambient and high-temperature testing. At high-temperature testing at 250 °C after one hour of stabilization, the UTS of the alloys increased with the T6 and T62 heat treatment conditions, but remained the same after T5 heat treatment; the highest UTS value was exhibited by the T62-tempered alloy with ~ 195 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

References

  1. A. Cuniberti, A. Tolley, M.V. Castro Riglos, R. Giovachini, Influence of natural aging on the precipitation hardening of an AlMgSi alloy. Mater. Sci. Eng., A 527(20), 5307–5311 (2010)

    Article  Google Scholar 

  2. A. Mohamed and F. Samuel, “A Review on the Heat Treatment of Al-Si-Cu/Mg Casting Alloys,” in Heat Treatment - Conventional and Novel Applications, Dr. Frank Czerwinski (Ed.), ISBN: 978-953-51-0768-2, InTech, doi: 10.5772/50282, 2012

  3. J.E. Hatch, Aluminum: Properties and Physical Metallurgy (American Society for Metals, Materials Park, 1984), p. 135

    Google Scholar 

  4. G.E. Totten, D.S. Mackenzie (eds.), Handbook of Aluminum (Marcel Dekker Inc, New York, Basel, 2003), p. 1296

    Google Scholar 

  5. H. Sehitoglu, T. Foglesong, H.J. Maier, Precipitation Effects on the Mechanical Behaviour of Aluminum Copper Alloys: Part I. Experiments. Metallurgical and Materials Transactions A 36A, 749–761 (2005)

    Article  Google Scholar 

  6. R.N. Lumley, J. Buha, I.J. Polmear, A.J. Morton, A.G. Crosky, Secondary Precipitation in Aluminum Alloys & Its Role in Modern Heat Treatment. Mater. Sci. Forum 519, 283–290 (2006)

    Article  Google Scholar 

  7. W. Reif, S. Yu, J. Dutkiewicz, R. Ciach, J. Krol, Pre-Ageing of AlSiCuMg Alloys in Relation to Structure and Mechanical Properties. Mater. Des. 18(4), 253–256 (1997)

    Article  Google Scholar 

  8. R.K. Mishra, G.W. Smith, W.J. Baxter, A.K. Sachdev, V. Franetovic, The Sequence of Precipitation in 339 Aluminum Castings. Journal of Materials Science 36(2), 461–468 (2001)

    Article  Google Scholar 

  9. H. Suzuki, I. Arai, M. Kanno, K. Itoi, Effect of Silicon Addition on the Aging Behavior of an Al-2%Cu-0.9%Mg Alloy. J. Jpn. Inst. Met. 27(5), 239–245 (1977)

    Article  Google Scholar 

  10. Y.J. Li, S. Brusethaug, A. Olsen, Influence of Cu on the Mechanical Properties and Precipitation Behavior of AlSi7Mg0.5 Alloy During Aging Treatment. Scripta Mater. 54(1), 99–103 (2006)

    Article  Google Scholar 

  11. H.R. Ammar, C. Moreau, A.M. Samuel, F.H. Samuel, H.W. Doty, Influences of alloying elements, solution treatment time and quenching media on quality indices of 413-type Al–Si casting alloys. Mater. Sci. Eng., A 489(1), 426–438 (2008)

    Article  Google Scholar 

  12. R.N. Lumley et al., The role of alloy composition in the heat treatment of aluminium high pressure die castings. Metallurgical Science and Technology 26(2), 283–290 (2013)

    Google Scholar 

  13. K. Wojciech, S.A. Babak, M. Niewczas, Structure and properties of cast Al–Si based alloy with Zr–V–Ti additions and its evaluation of high temperature performance. J. Alloy. Compd. 595, 67–79 (2014)

    Article  Google Scholar 

  14. Z. Nie, T. Jin, J. Fu, G. Xu, J. Yang, J. Zhou, T. Zuo, Research on rare earth in aluminum. Mater. Sci. Forum 396–402, 1731–1736 (2002)

    Article  Google Scholar 

  15. G.A. Zaki, A.M. Samuel, H.W. Doty, F.H. Samuel, Effect of metallurgical parameters on the performance of Al–Cu based alloys. International Journal of Metallurgical & Materials Science and Engineering 6(1), 35–56 (2016)

    Google Scholar 

  16. G.A. Zaki, A.M. Samuel, H.W. Doty, F.H. Samuel, Effect of Metallurgical Parameters on the Performance of Al-2%Cu-Based Alloys. Int. J. Metalcast. 11(3), 581–597 (2017)

    Article  Google Scholar 

  17. G.A. Zaki, A.M. Samuel, H.W. Doty, F.H. Samuel, Microstructural evolution during solidification of AlCu-based alloys. Int. J. Mater. Res. 106(11), 1144–1153 (2015)

    Article  Google Scholar 

  18. A.M. Samuel, H.W. Doty, S. Valtierra, F.H. Samuel, Defects related to incipient melting in Al-Si-Cu-Mg alloys. Mater. Des. 52, 947–956 (2013)

    Article  Google Scholar 

  19. A.M.A. Mohamed, F.H. Samuel and S. Al kahtani, Influence of Mg and solution heat treatment on the occurrence of incipient melting in Al-Si-Cu-Mg cast alloys. Mater. Sci. Eng., A 543, 22–34 (2012)

    Article  Google Scholar 

  20. F.H. Samuel, Incipient melting of Al5Mg8Si6Cu2 and Al2Cu intermetallics in unmodified and strontium-modified Al-Si-Cu-Mg (319) alloys during solution heat treatment. Journal of Materials Science 33(9), 2283–2297 (1998)

    Article  Google Scholar 

  21. K. Yu, W. Li, S. Li, J. Zhao, Mechanical Properties and Microstructure of Aluminum Alloy 2618 with Al3(Sc, Zr) Phases. Mater. Sci. Eng., A A368, 88–93 (2004)

    Article  Google Scholar 

  22. J.H. Sokolowski, X.-C. Sun, G. Byczynski, D.E. Penord, R. Thomas, A. Esseltine, The Removal of Copper-Phase Segregation and the Subsequent Improvement in Mechanical Properties of Cast 319 Aluminum Alloys by a Two-Stage Solution Heat-Treatment. J. Mater. Process. Technol. 53, 385–392 (1995)

    Article  Google Scholar 

  23. P. Sepehrband, R. Mahmudi, F. Khomamizadeh, Effect of Zr Addition on the Aging Behavior of A319 Aluminum Cast Alloy. Scripta Mater. 52, 253–257 (2005)

    Article  Google Scholar 

  24. R. Mahmudi, P. Sepehrband, H.M. Ghasemi, Improved properties of A319 aluminum casting alloy modified with Zr. Mater. Lett. 60, 2606–2610 (2006)

    Article  Google Scholar 

  25. E. Rincon, H.F. Lopez, M.M. Cisneros, H. Mancha, M.A. Cisneros, Effect of temperature on the tensile properties of an as-cast aluminum alloy A319. Mater. Sci. Eng., A 452–453, 682–687 (2007)

    Article  Google Scholar 

  26. Z. Li, A.M. Samuel, F.H. Samuel, C. Ravindran, S. Valtierra, H.W. Doty, Parameters controlling the performance of AA319-type alloys Part I: Tensile Properties. Material Science and Engineering A A367, 96–110 (2004)

    Article  Google Scholar 

  27. M. Drouzy, S. Jacob, M. Richard, Interpretation of Tensile Results by Means of Quality Index and Probable Yield Strength. AFS International Cast Metals Journal 5, 43–50 (1980)

    Google Scholar 

  28. S. Jacob, Quality Index in Predicting of Properties of Aluminum Castings-A Review. AFS Transactions 108, 811–818 (2000)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Amal Samuel for enhancing the quality of the electron images presented in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. H. Samuel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, A.I., Samuel, A.M., Doty, H.W. et al. Response of Varying Levels of Silicon and Transition Elements on Room- and Elevated-Temperature Tensile Properties in an Al–Cu Alloy. Inter Metalcast 12, 396–414 (2018). https://doi.org/10.1007/s40962-017-0177-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-017-0177-0

Keywords

Navigation