Skip to main content

Advertisement

Log in

Improvement in Tensile and Wear Properties of As-Cast Al–15%Mg2Si Composite Modified by Zn and Ni

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The effects of different amounts of Zn and Ni on the microstructure, tensile and wear properties of as-cast in situ Al–15wt%Mg2Si composite have been investigated. Microstructural examinations were assessed by the use of optical microscope, scanning electron microscope (SEM) and energy-dispersive spectroscopy. The results showed that the additions of 5 wt% Zn and 0.5 wt% Ni to the composite refine the microstructure and enhance the ultimate tensile strength (UTS) value from 210 to 290 MPa and elongation values of the material from 2.0 to 5.2%. The presence of fine dimples and cracked particles on the fracture surfaces of Ni-added specimens revealed that ductile mode of fracture is dominant. It was found that the amount of weight loss during dry sliding wear test on Al–15wt%Mg2Si composite reduces from 3 mg to 0.9 mg after adding 5 wt% Zn and 0.5 wt% Ni to the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. Q. Qin, W. Li, Mater. Trans. (2016). doi:10.2320/matertrans.M2015297

    Google Scholar 

  2. C. Brito, T.A. Costa, T.A. Vida et al., Metall. Mater. Trans. A (2015). doi:10.1007/s11661-015-2967-4

    Google Scholar 

  3. W. Xiaofeng, Z. Guang’an, W. Fufa, Rare Metal. Mater. Eng. (2015). doi:10.1016/S1875-5372(15)30042-4

    Google Scholar 

  4. S. Shabestari, H. Saghafian, F. Sahihi, M. Ghoncheh, Int. J. Cast Metals Res. (2015). doi:10.1179/1743133614Y.0000000143

    Google Scholar 

  5. C. Li, J. Hou, D. Zhao, Y. Wu, X. Liu, Mater. Lett. (2012). doi:10.1016/j.matlet.2011.10.074

    Google Scholar 

  6. Q. Qin, Y. Zhao, W. Zhou, P. Cong, Mater. Sci. Eng. A (2007). doi:10.1016/j.msea.2006.10.076

    Google Scholar 

  7. N. Soltani, A. Bahrami, M.I. Pech-Canul, Metall. Mater. Trans. A (2013). doi:10.1007/s11661-013-1747-2

    Google Scholar 

  8. L. Lu, K. Thong, M. Gupta, Compos. Sci. Technol. (2003). doi:10.1016/S0266-3538(02)00203-8

    Google Scholar 

  9. X.F. Wu, G.G. Zhang, F.F. Wu, Rare Metals (2013). doi:10.1007/s12598-013-0030-4

    Google Scholar 

  10. S. Yi, Adv. Mater. Res. (2014). doi:10.4028/www.scientific.net/AMR.936.23

    Google Scholar 

  11. Y.H. Zhao, X.B. Wang, X.H. Du, C. Wang, Int. J. Miner. Metall. Mater. (2013). doi:10.1007/s12613-013-0779-3

    Google Scholar 

  12. M. Azarbarmas, M. Emamy, J. Rassizadehghani, M. Alipour, M. Karamouz, Mater. Sci. Eng. A. (2011). doi:10.1016/j.msea.2011.07.048

    Google Scholar 

  13. C. Li, Y. Wu, H. Li, Y. Wu, X. Liu, Mater Sci. Eng. A (2010). doi:10.1016/j.msea.2010.09.056

    Google Scholar 

  14. M. Emamy, M. Khodadadi, A.H. Raouf, N. Nasiri, Mater. Des. (2013). doi:10.1016/j.matdes.2012.10.005

    Google Scholar 

  15. Q. Qin, Y. Zhao, W. Zhou, Mater. Sci. Eng. A (2008). doi:10.1016/j.wear.2007.05.008

    Google Scholar 

  16. J. Zhang, Z. Fan, Y. Wang, B. Zhou, J. Mater. Sci. Lett. (1999). doi:10.1023/A:1006684916145

    Google Scholar 

  17. S. Ji, F. Yan, Z. Fan, Mater. Sci. Eng. A (2015). doi:10.1016/j.msea.2014.12.019

    Google Scholar 

  18. L. Tsao, M. Chiang, W. Lin, M. Cheng, T. Chuang, Mater. Charact. (2002). doi:10.1016/S1044-5803(02)00276-0

    Google Scholar 

  19. R. Khorshidi, A.H. Raouf, M. Emamy, J. Campbell, J. Alloys Compd. (2011). doi:10.1016/j.jallcom.2011.07.012

    Google Scholar 

  20. D. Casari, T.H. Ludwig, M. Merlin, L. Arnberg, G.L. Garagnani, Mater. Sci. Eng. A (2014). doi:10.1016/j.msea.2014.05.059

    Google Scholar 

  21. J.W. Martin, Precipitation hardening, 2nd edn. (Butterworth-Heinemann, Oxford, 2013), pp. 140–141

    Google Scholar 

  22. M. Emamy, H.J. Nodooshan, A. Malekan, Mater. Des. (2011). doi:10.1016/j.matdes.2011.04.026

    Google Scholar 

  23. L. Babout, Y. Brechet, E. Maire, R. Fougeres, Acta Mater. (2004). doi:10.1016/j.actamat.2004.06.009

    Google Scholar 

  24. N.P. Suh, Wear (1973). doi:10.1016/0043-1648(73)90125-7

    Google Scholar 

  25. S. Jahanmir, N. Suh, Wear (1977). doi:10.1016/0043-1648(77)90082-5

    Google Scholar 

  26. J. Archard, J. Appl. Phys. (1953). doi:10.1063/1.1721448

    Google Scholar 

  27. X. Wu, G. Zhang, F. Wu, Trans. Nonferr. Metals Soc. China (2013). doi:10.1016/S1003-6326(13)62627-8

    Google Scholar 

  28. H. Saghafian, S. Shabestari, M. Ghoncheh, F. Sahihi, Tribol. Trans. (2015). doi:10.1080/10402004.2014.963770

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge University of Tehran for laboratory facilities and financial support of this work and also Mr. Najafi for help in experimental works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Emamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emamy, M., Eradi-Zare, A.B., Tavighi, K. et al. Improvement in Tensile and Wear Properties of As-Cast Al–15%Mg2Si Composite Modified by Zn and Ni. Inter Metalcast 11, 790–801 (2017). https://doi.org/10.1007/s40962-016-0125-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-016-0125-4

Keywords

Navigation