Skip to main content

Advertisement

Log in

Geochemical processes that explain arsenic in groundwater in a basin developed in the Pampean Mountains and piedmont, Córdoba, Argentina

  • Original Article
  • Published:
Sustainable Water Resources Management Aims and scope Submit manuscript

Abstract

Las Peñas stream basin, developed in the Pampean Mountains of Córdoba (Argentina), has hydrogeological characteristics of high interest for local human activities. The objective of this study is to interpret the influence of the geomorphological and lithological features of the basin, their control on the main hydrodynamic and hydrochemical processes and the factors that constrain the occurrence of arsenic (As) in groundwater. The unconfined aquifer develops in fractured rocks and sediments of diverse origin and provenance. Hydraulic gradients and groundwater geochemistry are conditioned by lithology and relief. The groundwater is mainly fresh (electrical conductivities between 586 and 2000 µS/cm), although there are brackish-type samples (up to 3900 µS/cm) located in the piedmont. The groundwater showed calcium and sodium bicarbonate geochemical types, with the local occurrence of mixed types (sodium-calcium bicarbonate and sodium bicarbonate-sulfate). The dominant geomorphological and lithological aspects condition the chemical composition of groundwater while controlling the distribution and concentration of As in solution. The highest As values were found in gently undulating reliefs where loess sediments prevail, especially in the main relict paleosurface area located in the upper basin. Taking this into account, it is assumed that the abundant volcanic glass—which is known as an arsenic bearer—in the regional sediments, is the possible source of this chemical element as a result of hydrolysis. Also, desorption processes in Fe and Mn oxy-hydroxides present in the loess sediments are related to the passage of As ions to the solution. As it is known, not only the source but a specific geochemical environment to allow the transference of chemical elements from minerals to groundwater is needed. In this way, the results, including a multivariate statistical analysis, demonstrate that the highest As values in groundwater, well correlated with high fluoride (F) contents, are related to an alkaline environment of sodium bicarbonate groundwater with high pH values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data set generated during the current study are included in the article. More data are, however, available from the corresponding author on a reasonable request.

References

  • Alarcón-Herrera MT, Bundschuh J, Nath B, Nicolli HB, Gutierrez M, Reyes-Gómez VM, Nuñez D, Martín-Domínguez IR, Sracek O (2013) Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: genesis, mobility and remediation. J Hazard Mater 262:960–969. https://doi.org/10.1016/j.jhazmat.2012.08.005

    Article  Google Scholar 

  • Aldous AR, Gannett MW (2021) Groundwater, biodiversity, and the role of flow system scale. Ecohydrology 14:e2342

    Article  Google Scholar 

  • Anawar HM, Akai J, Sakugawa H (2004) Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater. Chemosphere 54:753–762

    Article  Google Scholar 

  • Andreazzini J, Degiovanni S (2014) Geomorphology of paleosurfaces in the Sierras de Comechingones, Central Pampean Ranges, Argentina. In: Rabassa J, Ollier C (eds) Gondwana landscapes in southern South America. Springer Earth System Sciences, Amsterdam, pp 305–330

    Chapter  Google Scholar 

  • AullónAlcaine A, Schulz C, Bundschuh J, Jacks G, Thunvik R, Gustafsson JP, Mörth CM, Sracek O, Ahmad A, Bhattacharya P (2020) Hydrogeochemical controls on the mobility of arsenic, fluoride and other geogenic co-contaminants in the shallow aquifers of northeastern La Pampa Province in Argentina. Sci Total Environ 715:136671. https://doi.org/10.1016/j.scitotenv.2020.136671

    Article  Google Scholar 

  • Ayerza A (1918) Arsenicismo regional endémico (keratodermia y melanodermia combinadas). Boletín De La Acad De Med 2(3):11–24

    Google Scholar 

  • Bates MN, Rey OA, Biggs ML, LE HopenhaynC M, Kalman D, Smith AH (2004) Case–control study of bladder cancer and exposure to arsenic in Argentina. Am J Epidemiol 159(4):381–389

    Article  Google Scholar 

  • Bécher Quinodóz F, Maldonado L, Blarasin M, Matteoda E, Lutri V, Cabrera A, Giuliano Albo J, Giacobone D (2019) The development of a conceptual model for arsenic mobilization in a fluvio-eolian aquifer using geochemical and statistical methods. Environ Earth Sci 78:206. https://doi.org/10.1007/s12665-019-8201-8

    Article  Google Scholar 

  • Becker A (1987) Génesis de las series Spernanzoni y Rodeo Viejo, Departamento Río Cuarto, provincia de Córdoba. Unpublished Degree Thesis. National University of Río Cuarto, Córdoba, Argentina

  • Bhattacharya P, Claesson M, Bundschuh J, Sracek O, Fagerberg J, Jacks G, Martin RA, Storniolo AR, Thir JM (2006) Distribution and mobility of arsenic in the Río Dulce Alluvial aquifers in Santiago del Estero Province, Argentina. Sci Total Environ 358(1–3):97–120. https://doi.org/10.1016/j.scitotenv.2005.04.048

    Article  Google Scholar 

  • Biaggini R, Salvador M, de Querio R, Torres C, Biaggini M, Diez A (1993) Hidroarsenicismo crónico. Casos diagnosticados en el período 1972–1993. Arch Argent Dermatol 45:47–52

    Google Scholar 

  • Blanco MC, Paoloni JD, Morrás HJM, Fiorentino CE, Sequeira M (2006) Content and distribution of arsenic in soils, sediments and groundwater environments of the southern pampa region, Argentina. Environ Toxicol 21(6):561–574. https://doi.org/10.1002/tox.20219

    Article  Google Scholar 

  • Blarasin M, Cabrera A, Matteoda E, Giuliano Albo J, Felizzia J (2009) Arsénico y Flúor en el agua subterránea en el Sur de Córdoba (Argentina), aspectos geoquímicos, conflictos de uso y gestión del recurso. Temas emergentes en la gestión de aguas subterráneas. Ed. Benavente y Díaz, pp 115–134. (ISBN: 978-98723936-5-6)

  • Blarasin M, Cabrera A, Hildmman F, Matteoda E, Bécher Quinodóz F, Giuliano Albo MJ, Maldonado L (2011) Fluorides in the phreatic aquifer of the loess plain, Córdoba. Argic J Environ Hydrol 19(17):1–10 (Ed: AIEH International Association of Environmental Hydrology. ISSN 1058-3912)

    Google Scholar 

  • Blarasin M, Cabrera A, Matteoda E (2014) Aguas subterráneas de la provincia de Córdoba, 1st edn. (UNIRIO) National University of Río Cuarto, Río Cuarto, p 148

  • Bonalumi A, Martino R, Sfragulla JA, Carignano C, Tauber A (2005) Hoja Geológica 3363-I Villa María Provincia de Córdoba. Instituto de Geología y Recursos Minerales, SEGEMAR, Boletín 347, Buenos Aires

  • Bundschuh J, Farías B, Martin R, Storniolo A, Bhattacharya P, Cortes J, Bonorino G, Albouy R (2004) Ground water arsenic in the Chaco-Pampean Plain, Argentina: case study from Robles county, Santiago Del Estero Province. Appl Geochem 19(12):231–243

    Article  Google Scholar 

  • Bundschuh J, Niazi N, Alam M, Berg M, Herath I, Tomaszewska B, Maity JP, Ok YS (2022) Global arsenic dilemma and sustainability. J Hazard Mater 436:129197. https://doi.org/10.1016/j.jhazmat.2022.129197

    Article  Google Scholar 

  • Cabrera A, Blarasin M, Dapeña C, Maldonado L (2013) Composición físico-química e isotópica de precipitaciones del sur de Córdoba. Gonzalez, Kruse, Trovatto & Laurencena (eds) Estación Río Cuarto Red Nacional de Colectores. Argentina. Temas Actuales Hidrología Subterránea. Ed. Edulp. pp 35–42

  • Carignano C, Kröhling D, Degiovanni S, Cioccale M (2014) Geomorfología. In: Martino RD, Guereschi AB (eds) Relatorio del XIX Congreso Geológico Argentino: Geología y Recursos Naturales de la Provincia de Córdoba. Asociación Geológica Argentina, Córdoba, pp 747–822

    Google Scholar 

  • Chakraborti D (2011) Arsenic: occurrence in groundwater. Encyclopedia of Environmental Health. Elsevier BV, New York, pp 156–180

    Google Scholar 

  • Código Alimentario Argentino (CAA) (2019) Chapter XII. https://www.argentina.gob.ar/anmat/codigoalimentario. Accessed Aug 2022

  • Degiovanni S (2008) Análisis geoambiental del comportamiento de los sistemas fluviales del Sur de Córdoba, en especial del arroyo Achiras-del Gato, como base para su gestión sustentable. Unpublished Ph.D. Thesis, National University of Río Cuarto, Córdoba, Argentina

  • Etchichury MC, Tófalo OR (2004) Mineralogía de arenas y limos en suelos, sedimentos fluviales y eólicos actuales del sector austral de la cuenca Chacoparanense: regionalización y áreas de aporte. Rev Asociación Geológica Argentina 59(2):317–329

    Google Scholar 

  • García MG, Sracek O, Fernández DS, del Valle HM (2007) Factors affecting arsenic concentration in groundwaters from Northwestern Chaco-Pampean Plain, Argentina. Environ Geol 52:1261–1275. https://doi.org/10.1007/s00254-006-0564-y

    Article  Google Scholar 

  • García MG, Borgnino L, Bia G, Depetris PJ (2014) Mechanisms of arsenic and fluoride release from Chaco-Pampean sediments (Argentina). Int J Environ Health 7:41. https://doi.org/10.1504/ijenvh.2014.060122

    Article  Google Scholar 

  • Goyenechea M (1917) Sobre la nueva enfermedad descubierta en Bell Ville. Rev Med Rosario 7:485

    Google Scholar 

  • Hopenhayn-Rich C, Biggs ML, Fuchs A, Bergoglio R, Tello E, Nicolli H, Smith AH (1996) Blader cancer mortality associated with arsenic in drinking water in Córdoba, Argentina. Epidemiology 7:117–124

    Article  Google Scholar 

  • Kröhling D, Carignano C (2014) La estratigrafía de los depósitos sedimentarios cuaternarios. In: Roberto Martino D, Alina Guereschi B (eds) Relatorio del XIX Congreso Geológico Argentino: Geología y Recursos Naturales de la Provincia de Córdoba. Asociación Geológica Argentina, Córdoba, pp 663–684

    Google Scholar 

  • Kumar M, Goswami R, Patel AK, Srivastava M, Das N (2020) Scenario, perspectives and mechanism of arsenic and fluoride co-occurrence in the groundwater: a review. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.126126

    Article  Google Scholar 

  • Litter MI, Ingallinella AM, Olmos V, Savio M, Difeo G, Botto L, Farfán Torres EM, Taylor S, Frangie S, Herkovits J, Schalamuk I, González MJ, Berardozzi E, GarcíaEinschlag FS, Bhattacharya P, Ahmad A (2019) Arsenic in Argentina: occurrence, human health, legislation and determination. Sci Total Environ 676:756–766

    Article  Google Scholar 

  • Matteoda EM (2012) Evaluación hidrodinámica e hidrogeoquímica de la cuenca del arroyo El Barreal para establecer línea de base ambiental,con énfasis en la geoquímica del cromo. Unpublished PhD Thesis. National University of Río Cuarto, Córdoba, Argentina

  • Michelli MP (2020) Composición geoquímica de aguas superficiales y subterráneas en área de recarga hidrológica y su influencia en los contenidos de arsénico y flúor. Las Peñas Sur. Córdoba. Unpublished Bachelor’s Thesis. National University of Río Cuarto, Córdoba, Argentina

  • Michelli MP, Matteoda EM, Blarasin M, Iacomussi GS (2022) Composición geoquímica y aportes sobre contenidos de arsénico y flúor en aguas superficiales y subterráneas en área de recarga hidrológica. Córdoba. In Albouy R, Auge M et al. (eds) XI Congreso Argentino de Hidrogeología: Agua subterránea, el agua que no se ve. (ISBN: 978-987-655-310-0). Editorial: Universidad Nacional del Sur, Bahía Blanca, pp 187–196

  • Nicolli HB, Suriano J, Gómez Peral M, Ferpozzi L, Balean O (1989) Groundwater contamination with Arsenic and other trace elements in an area of the province of Córdoba, Argentina. Environ Geol Water Sci 14(1):3–16

    Article  Google Scholar 

  • Nicolli HB, Bundschuh J, Blanco MDC, Tujchneider OC, Panarello HO, Dapeña C, Rusansky JE (2012) Arsenic and associated trace elements in groundwater from the Chaco-Pampean plain, Argentina: results from 100 years of research. Sci Total Environ 429:36–56

    Article  Google Scholar 

  • Pramparo S, Blarasin M, Currell M, Degiovanni S, Bécher Quinodóz F, Lutri V, Eric C, Giacobone D, Cabrera A (2022) Relationships between geomorphological features and groundwater geochemistry in the upper and middle basin of Las Peñas stream, Pampean Mountains, Córdoba Argentina. Environ Earth Sci 81:339. https://doi.org/10.1007/s12665-022-10456-z

    Article  Google Scholar 

  • Rabassa J, Carignano C, Cioccale M (2014) A general overview of Gondwana landscapes in Argentina. In: Rabassa J, Ollier C (eds) Gondwana landscapes in southern South America. Springer Earth System Sciences, Amsterdam, pp 201–245

    Chapter  Google Scholar 

  • Smedley PL, Nicolli HB, Barros AJ, Tullio JO (1998) Origin and mobility of arsenic in groundwater from the Pampean Plain, Argentina. In: Proceedings of the 9th international symposium on water–rock interaction (WRI 9), Taupo, New Zealand, pp 275–278

  • Smedley PL, Macdonald DMJ, Nicolli HB, Barros AJ, Tullio JO, Pearce JM (2000) Arsenic and other quality problems in groundwater from northern La Pampa Province, Argentina. Nottingham. TR WC/99/36. British Geological Survey

  • Smedley PL, Nicolli HB, Macdonald DMJ, Barros AJ, Tullio JO (2002) Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Appl Geochem 17:259–284

    Article  Google Scholar 

  • SPSS Statistics version 21 (2012) Chicago, Illinois

  • Steinmaus C, Yuan Y, Kalman D, Rey OA, Skibola CF (2010) Individual differences in arsenic metabolism and lung cancer in a case–control study in Córdoba, Argentina. Toxicol Appl Pharmacol 247:138–145

    Article  Google Scholar 

  • Teruggi ME (1957) The nature and origin of Argentine loess. J Sediment Res 27(3):322–332

    Google Scholar 

  • World Health Organization (2017) Guidelines for drinking-water quality: fourth edition incorporating the first addendum. World Health Organization, Geneva

    Google Scholar 

Download references

Acknowledgements

The authors want to express their gratitude to the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) for supporting the scholarship of some of the authors, as well as the organizations that supported this research.

Funding

The research was supported by Secretaría de Ciencia y Técnica (Universidad Nacional de Río Cuarto) and Fondo para la Investigación Científica y Tecnológica (FONCYT Argentina—PICT 2015-0474 and FONCYT Argentina—PICT 2019-0434).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection and analysis were performed by SP, MB, SD, DG, VL, AC and MP. The first draft of the manuscript was written by SP and MB and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Santiago Pramparo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data transparency

All data as well as software application claims and comply with field standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pramparo, S., Blarasin, M., Degiovanni, S. et al. Geochemical processes that explain arsenic in groundwater in a basin developed in the Pampean Mountains and piedmont, Córdoba, Argentina. Sustain. Water Resour. Manag. 9, 134 (2023). https://doi.org/10.1007/s40899-023-00917-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40899-023-00917-z

Keywords

Navigation