Skip to main content
Log in

Regenerative Engineering of a Limb: From Amputation to Regeneration

  • Review
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

Purpose

This work is a summary of regeneration mechanisms and some important aspects of cellular and molecular factors in regeneration, in addition to techniques that have been employed for limb regeneration.

Methods

In this article, a comprehensive review of literature related to limb regeneration mechanisms, influential factors in limb regeneration, and limb regeneration strategies has been conducted.

Results

Regeneration mechanism in regenerative species is different from mammals and blastema formation after wound healing helps them to regrow their limb. Also, some essential signaling pathways should be activated for proper regeneration. Moreover, age, immune system, metamorphosis, and body size are critical parameters that can influence regeneration in different species. Several approaches are being studied to promote limb regeneration including cell therapy, gene therapy, immune-based therapy, and electrical stimulation, but none of them led to complete limb regeneration. Regenerative engineering is an emerging multi-disciplinary field for the reconstruction of complex tissues and organ systems, making it a viable approach for the regeneration of limbs as well.

Conclusion

Despite significant advances in the field leading to a better understanding of the mechanisms and parameters involved in regeneration, the specific techniques and approaches for successfully regenerating limbs in mammals have yet to be discovered. We believe solutions lie in using a convergence of technologies and regenerative engineering is the central approach for human limb regeneration.

Lay Summary

Limb loss is experienced by more than 2 million Americans, negatively impacting their quality of life. It has been determined that mammals, including humans, can only regenerate certain tissues, such as digit tips. However, regenerative amphibians are capable of fully regenerating their limbs. Therefore, taking clues from urodeles, research on developing techniques, and studying mechanisms to regenerate human limbs is becoming a highly important field pursued vigorously. In this review, we first explain the process of limb regeneration in urodele amphibians followed by important factors affecting regeneration. Next, we explain the present strategies and methods for mammalian limb regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chui KK, Jorge MM, Yen SC, Lusardi MM. Orthotics and prosthetics in rehabilitation. Orthotics and prosthetics in rehabilitation [Internet]. 2019 [cited 2023 Apr 23];1–817. Available from: http://www.sciencedirect.com:5070/book/9780323609135/orthotics-and-prosthetics-in-rehabilitation.

  2. Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil. 2008;89:422–9.

    Article  Google Scholar 

  3. Hoyt BW, Walsh SA, Forsberg JA. Osseointegrated prostheses for the rehabilitation of amputees (OPRA): results and clinical perspective. https://doi.org/10.1080/1743444020201704623 [Internet]. 2020 [cited 2023 Feb 7];17:17–25. Available from: https://www.tandfonline.com/doi/abs/10.1080/17434440.2020.1704623.

  4. Raspopovic S, Valle G, Petrini FM. Sensory feedback for limb prostheses in amputees. Nat Mater 2021 20:7 [Internet]. 2021 [cited 2023 Feb 7];20:925–39. Available from: https://www.nature.com/articles/s41563-021-00966-9.

  5. Kahle JT, Klenow TD, Highsmith MJ. Comparative effectiveness of an adjustable transfemoral prosthetic interface accommodating volume fluctuation: case study. Technol Innov. 2016;18:175–83.

    Article  Google Scholar 

  6. Jonkman MF, Dijkstra PU. Skin problems of the stump in lower limb amputees: 1. A clinical study. Acta Derm Venereol [Internet]. 2011 [cited 2023 Feb 7];91:173–7. Available from: http://www.rug.nl/research/portal.

  7. Iske J, Nian Y, Maenosono R, Maurer M, Sauer IM, Tullius SG. Composite tissue allotransplantation: opportunities and challenges. Cell Mol Immunol 2019 16:4 [Internet]. 2019 [cited 2023 Feb 7];16:343–9. Available from: https://www.nature.com/articles/s41423-019-0215-3.

  8. Schuind F, Abramowicz D, Schneeberger S. Hand transplantation: the state-of-the-art. https://doi.org/10.1016/j.jhsb200609008 [Internet]. 2016 [cited 2023 Feb 7];32:2–17. Available from: https://journals.sagepub.com/doi/10.1016/j.jhsb.2006.09.008.

  9. Hovius SER. Hand transplantation – an opinion. https://doi.org/10.1054/jhsb20010673 [Internet]. 2016 [cited 2023 Feb 7];26 B:519–20. Available from: https://journals.sagepub.com/doi/10.1054/jhsb.2001.0673

  10. Laurencin CT, Nair LS. The quest toward limb regeneration: a regenerative engineering approach. [cited 2023 Apr 23]; Available from: https://academic.oup.com/rb/article/3/2/123/2461188.

  11. Laurencin CT, Nair LS. Regenerative engineering: approaches to limb regeneration and other grand challenges. Regen Eng Transl Med 2015 1:1 [Internet]. 2015 [cited 2022 Nov 9];1:1–3. Available from: https://link.springer.com/article/10.1007/s40883-015-0006-z.

  12. Wang W, Hu CK, Zeng A, Alegre D, Hu D, Gotting K, et al. Changes in regeneration-responsive enhancers shape regenerative capacities in vertebrates. Science (1979) [Internet]. 2020 [cited 2023 Apr 23];369. Available from: https://www.science.org/doi/10.1126/science.aaz3090.

  13. Gerber T, Murawala P, Knapp D, Masselink W, Schuez M, Hermann S, et al. Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science (1979) [Internet]. 2018 [cited 2023 Feb 7];362. Available from: https://www.science.org/doi/10.1126/science.aaq0681.

  14. Purushothaman S, Elewa A, Seifert AW. Fgf-signaling is compartmentalized within the mesenchyme and controls proliferation during salamander limb development. Elife. 2019;8:e48507. https://doi.org/10.7554/eLife.48507

  15. Arenas Gómez CM, Sabin KZ, Echeverri K. Wound healing across the animal kingdom: crosstalk between the immune system and the extracellular matrix. Dev Dyn. 2020;249:834–46.

    Article  Google Scholar 

  16. Fernando WA, Leininger E, Simkin J, Li N, Malcom CA, Sathyamoorthi S, et al. Wound healing and blastema formation in regenerating digit tips of adult mice. Dev Biol. 2011;350:301–10.

    Article  CAS  Google Scholar 

  17. Khan PA, Crawford MJ. Regeneration and development. An amphibian call to arms. Dev Dynamics [Internet]. 2021 [cited 2023 Feb 7];250:896–901. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/dvdy.272.

  18. Godwin JW, Rosenthal N. Scar-free wound healing and regeneration in amphibians: immunological influences on regenerative success. Differentiation. 2014;87:66–75.

    Article  CAS  Google Scholar 

  19. Scadding SR. Limb regeneration in adult amphibia. https://doi.org/10.1139/z81-007 [Internet]. 2011 [cited 2023 Feb 8];59:34–46. Available from: https://cdnsciencepub.com/doi/10.1139/z81-007.

  20. Murugan NJ, Vigran HJ, Miller KA, Golding A, Pham QL, Sperry MM, et al. Acute multidrug delivery via a wearable bioreactor facilitates long-term limb regeneration and functional recovery in adult Xenopus laevis. Sci Adv [Internet]. 2022 [cited 2023 Feb 8];8:2164. Available from: https://www.science.org/doi/10.1126/sciadv.abj2164.

  21. Marino AA. Limb regeneration. 2020 [cited 2023 Apr 24];529–55. Available from: https://www.taylorfrancis.com/chapters/edit/https://doi.org/10.1201/9781003065821-20/limb-regeneration-stephen-smith.

  22. Taghiyar L, Hosseini S, Safari F, Bagheri F, Fani N, Stoddart MJ, et al. New insight into functional limb regeneration: A to Z approaches. J Tissue Eng Regen Med [Internet]. 2018 [cited 2023 Apr 24];12:1925–43. Available from: https://pubmed.ncbi.nlm.nih.gov/30011424/.

  23. Laurencin CT, Khan Y. Regenerative engineering. Sci Transl Med [Internet]. 2012 [cited 2023 Feb 8];4. Available from: https://www.science.org/doi/10.1126/scitranslmed.3004467.

  24. Mengsteab PY, Freeman J, Barajaa MA, Nair LS, Laurencin CT. Ligament regenerative engineering: braiding scalable and tunable bioengineered ligaments using a bench-top braiding machine. Regen Eng Transl Med [Internet]. 2021 [cited 2023 Apr 24];7:524–32. Available from: https://link.springer.com/article/10.1007/s40883-020-00178-8.

  25. Awale GM, Barajaa MA, Kan HM, Lo KWH, Laurencin CT. Single-dose induction of osteogenic differentiation of mesenchymal stem cells using a cyclic AMP activator, Forskolin. Regen Eng Transl Med [Internet]. 2022 [cited 2023 Apr 24];9:97–107. Available from: https://link.springer.com/article/10.1007/s40883-022-00262-1.

  26. Otsuka T, Kan HM, Laurencin CT. Regenerative engineering approaches to scar-free skin regeneration. Regen Eng Transl Med 2021 8:2 [Internet]. 2021 [cited 2023 Apr 24];8:225–47. Available from: https://link.springer.com/article/10.1007/s40883-021-00229-8.

  27. Barajaa MA, Nair LS, Laurencin CT. Bioinspired scaffold designs for regenerating musculoskeletal tissue interfaces. Regen Eng Transl Med [Internet]. 2020 [cited 2023 Apr 24];6:451–83. Available from: https://link.springer.com/article/10.1007/s40883-019-00132-3.

  28. Esdaille CJ, Washington KS, Laurencin CT. Regenerative engineering: a review of recent advances and future directions. https://doi.org/10.2217/rme-2021-0016 [Internet]. 2021 [cited 2023 Feb 8];16:495–512. Available from: https://www.futuremedicine.com/doi/10.2217/rme-2021-0016.

  29. Barajaa MA, Nair LS, Laurencin CT. Bioinspired scaffold designs for regenerating musculoskeletal tissue interfaces. Regen Eng Transl Med [Internet]. 2020 [cited 2023 Feb 8];6:451–83. Available from: https://link.springer.com/article/10.1007/s40883-019-00132-3.

  30. Afzali Naniz M, Askari M, Zolfagharian A, Hospodiuk-Karwowski M, Chi K, et al. Biomaterials with stiffness gradient for interface tissue engineering. Biomed Mater [Internet]. 2022 [cited 2023 Feb 8];17:064103. Available from: https://iopscience.iop.org/article/10.1088/1748-605X/ac8b4a.

  31. Font Tellado S, Chiera S, Bonani W, Poh PSP, Migliaresi C, Motta A, et al. Heparin functionalization increases retention of TGF-β2 and GDF5 on biphasic silk fibroin scaffolds for tendon/ligament-to-bone tissue engineering. Acta Biomater. 2018;72:150–66.

    Article  CAS  Google Scholar 

  32. Khademhosseini A. HEAL project aims to regenerate human limbs by 2030. Regen Eng Transl Med 2015 1:1 [Internet]. 2015 [cited 2023 Feb 8];1:50–7. Available from: https://link.springer.com/article/10.1007/s40883-015-0007-y.

  33. Aztekin C, Mekayla |, Storer A, Storer MA. To regenerate or not to regenerate: vertebrate model organisms of regeneration-competency and -incompetency. Wound Repair Regen [Internet]. 2022 [cited 2023 Apr 24];30:623–35. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/wrr.13000.

  34. Bando T, Yokoyama H, Nakamura H. Wound repair, remodeling, and regeneration. Dev Growth Differ [Internet]. 2018 [cited 2023 Apr 25];60:303–5. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/dgd.12566.

  35. Ferris DR, Satoh A, Mandefro B, Cummings GM, Gardiner DM, Rugg EL. Ex vivo generation of a functional and regenerative wound epithelium from axolotl (Ambystoma mexicanum) skin. Dev Growth Differ [Internet]. 2010 [cited 2023 Apr 24];52:715–24. Available from: https://pubmed.ncbi.nlm.nih.gov/20874715/.

  36. Leigh ND, Currie JD. Rebuilding limbs, one cell at a time. Dev Dynamics [Internet]. 2022 [cited 2023 Apr 24];251:1389. Available from: /pmc/articles/PMC9545806/.

  37. Satoh A, Graham GMC, Bryant SV, Gardiner DM. Neurotrophic regulation of epidermal dedifferentiation during wound healing and limb regeneration in the axolotl (Ambystoma mexicanum). Dev Biol. 2008;319:321–35.

    Article  CAS  Google Scholar 

  38. Endo T, Bryant SV, Gardiner DM. A stepwise model system for limb regeneration. Dev Biol. 2004;270:135–45.

    Article  CAS  Google Scholar 

  39. Seifert AW, Muneoka K. The blastema and epimorphic regeneration in mammals. Dev Biol. 2018;433:190–9.

    Article  CAS  Google Scholar 

  40. Yokoyama H. Initiation of limb regeneration: the critical steps for regenerative capacity. Dev Growth Differ [Internet]. 2008 [cited 2023 Apr 24];50:13–22. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1440-169X.2007.00973.x.

  41. Simkin J, Han M, Yu L, Yan M, Muneoka K. The mouse digit tip: from wound healing to regeneration. Methods Mol Biol [Internet]. 2013 [cited 2023 Feb 8];1037:419–35. Available from: https://link.springer.com/protocol/10.1007/978-1-62703-505-7_24.

  42. Stocum DL. The role of peripheral nerves in urodele limb regeneration. Eur J Neurosci [Internet]. 2011 [cited 2023 Feb 8];34:908–16. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1460-9568.2011.07827.x.

  43. Davidian D, Levin M. Inducing vertebrate limb regeneration: a review of past advances and future outlook. Cold Spring Harb Perspect Biol [Internet]. 2022 [cited 2023 Feb 8];14:a040782. Available from: http://cshperspectives.cshlp.org/content/14/4/a040782.full.

  44. Atala A, Lanza RP, Robert P, Mikos AG, Nerem RM. Principles of regenerative medicine. Academic Press. 2018.

  45. Santosh N, Windsor LJ, Mahmoudi BS, Li B, Zhang W, Chernoff EA, et al. Matrix metalloproteinase expression during blastema formation in regeneration-competent versus regeneration-deficient amphibian limbs. Dev Dynamics [Internet]. 2011 [cited 2023 Feb 8];240:1127–41. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/dvdy.22503.

  46. Kawakami A. Stem cell system in tissue regeneration in fish. Dev Growth Differ [Internet]. 2010 [cited 2023 Apr 25];52:77–87. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1440-169X.2009.01138.x.

  47. Sousa S, Afonso N, Bensimon-Brito A, Fonseca M, Simões M, Leon J, et al. Differentiated skeletal cells contribute to blastema formation during zebrafish fin regeneration. Development [Internet]. 2011 [cited 2023 Feb 8];138:3897–905. Available from: https://journals.biologists.com/dev/article/138/18/3897/44624/Differentiated-skeletal-cells-contribute-to.

  48. Cabej NR. Neural control of postphylotypic development. Epigenetic Princ Evol. Academic Press. 2018;137–214.

  49. Kragl M, Knapp D, Nacu E, Khattak S, Maden M, Epperlein HH, et al. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 2009 460:7251 [Internet]. 2009 [cited 2023 Feb 8];460:60–5. Available from: https://www.nature.com/articles/nature08152.

  50. McCusker CD, Gardiner DM. Positional information is reprogrammed in blastema cells of the regenerating limb of the axolotl (Ambystoma mexicanum). PLoS One [Internet]. 2013 [cited 2023 Feb 8];8:e77064. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0077064.

  51. Nacu E, Glausch M, Le HQ, Damanik FFR, Schuez M, Knapp D, et al. Connective tissue cells, but not muscle cells, are involved in establishing the proximo-distal outcome of limb regeneration in the axolotl. Development [Internet]. 2013 [cited 2023 Feb 8];140:513–8. Available from: https://journals.biologists.com/dev/article/140/3/513/46084/Connective-tissue-cells-but-not-muscle-cells-are.

  52. Singer M. The influence of the nerve in regeneration of the amphibian extremity. https://doi.org/10.1086/398873 [Internet]. 1952 [cited 2023 Feb 8];27:169–200. Available from: https://www.journals.uchicago.edu/doi/10.1086/398873.

  53. Singer M. The nervous system and regeneration of the forelimb of adult Triturus. V. The influence of number of nerve fibers, including a quantitative study of limb innervation. J Exp Zool [Internet]. 1946 [cited 2023 Feb 8];101:299–337. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/jez.1401010303.

  54. Monaghan JR, Epp LG, Putta S, Page RB, Walker JA, Beachy CK, et al. Microarray and cDNA sequence analysis of transcription during nerve-dependent limb regeneration. BMC Biol [Internet]. 2009 [cited 2023 Feb 8];7:1–19. Available from: https://bmcbiol.biomedcentral.com/articles/10.1186/1741-7007-7-1.

  55. Smith GN, Toole BP, Gross J. Hyaluronidase activity and glycosaminoglycan synthesis in the amputated newt limb: comparison of denervated, nonregenerating limbs with regenerates. Dev Biol. 1975;43:221–32.

    Article  CAS  Google Scholar 

  56. Mescher AL, Munaim SI. Changes in the extracellular matrix and glycosaminoglycan synthesis during the initiation of regeneration in adult newt forelimbs. Anat Rec [Internet]. 1986 [cited 2023 Feb 8];214:424–31. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/ar.1092140414.

  57. Giampaoli S, Bucci S, Ragghianti M, Mancino G, Zhang F, Ferretti P. Expression of FGF2 in the limb blastema of two Salamandridae correlates with their regenerative capability. Proc R Soc Lond B Biol Sci [Internet]. 2003 [cited 2023 Feb 8];270:2197–205. Available from: https://royalsocietypublishing.org/doi/10.1098/rspb.2003.2439.

  58. Athippozhy A, Lehrberg J, Monaghan JR, Gardiner DM, Voss & SR, Voss CSR. Characterization of in vitro transcriptional responses of dorsal root ganglia cultured in the presence and absence of blastema cells from regenerating salamander limbs. Regeneration [Internet]. 2014 [cited 2023 Feb 8];1:1–10. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/reg2.14

  59. Satoh A, Bryant SV, Gardiner DM. Nerve signaling regulates basal keratinocyte proliferation in the blastema apical epithelial cap in the axolotl (Ambystoma mexicanum). Dev Biol. 2012;366:374–81.

    Article  CAS  Google Scholar 

  60. Min S, Whited JL. Limb blastema formation: how much do we know at a genetic and epigenetic level? J Biol Chem [Internet]. 2023 [cited 2023 Apr 25];299. Available from: http://www.jbc.org/article/S0021925822013011/fulltext.

  61. Zielins ER, Ransom RC, Leavitt TE, Longaker MT, Wan DC. The role of stem cells in limb regeneration. Organogenesis [Internet]. 2016 [cited 2023 Feb 8];12:16. Available from: /pmc/articles/PMC4882123/.

  62. Dolan CP, Dawson LA, Muneoka K. Digit tip regeneration: merging regeneration biology with regenerative medicine. Stem Cells Transl Med [Internet]. 2018 [cited 2023 Feb 8];7:262–70. Available from: https://academic.oup.com/stcltm/article/7/3/262/6454847.

  63. Endo T, Gardiner DM, Makanae A, Satoh A. The accessory limb model: an alternative experimental system of limb regeneration. Methods Mol Biol [Internet]. 2015 [cited 2023 Feb 8];1290:101–13. Available from: https://link.springer.com/protocol/10.1007/978-1-4939-2495-0_8.

  64. Maden M. Vitamin A and pattern formation in the regenerating limb. Nature 1982 295:5851 [Internet]. 1982 [cited 2023 Feb 8];295:672–5. Available from: https://www.nature.com/articles/295672a0.

  65. da Silva SM, Gates PB, Brockes JP. The newt ortholog of CD59 is implicated in proximodistal identity during amphibian limb regeneration. Dev Cell. 2002;3:547–55.

    Article  Google Scholar 

  66. Scadding SR, Maden M. Retinoic acid gradients during limb regeneration. Dev Biol. 1994;162:608–17.

    Article  CAS  Google Scholar 

  67. Saito S, Suzuki T. How do signaling and transcription factors regulate both axis elongation and Hox gene expression along the anteroposterior axis? Dev Growth Differ [Internet]. 2020 [cited 2023 Feb 8];62:363–75. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/dgd.12682.

  68. Tamura K, Ohgo S, Yokoyama H. Limb blastema cell: a stem cell for morphological regeneration. Dev Growth Differ [Internet]. 2010 [cited 2023 Feb 8];52:89–99. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1440-169X.2009.01144.x.

  69. Mercader N, Tanaka EM, Torres M. Proximodistal identity during vertebrate limb regeneration is regulated by Meis homeodomain proteins. Development [Internet]. 2005 [cited 2023 Feb 8];132:4131–42. Available from: https://journals.biologists.com/dev/article/132/18/4131/42785/Proximodistal-identity-during-vertebrate-limb.

  70. Delgado I, López-Delgado AC, Alberto RD, Giovinazzo G, Cadenas V, Fernández-De-Manuel L, et al. Proximo-distal positional information encoded by an Fgf-regulated gradient of homeodomain transcription factors in the vertebrate limb. Sci Adv [Internet]. 2020 [cited 2023 Oct 20];6. Available from: https://www.science.org/doi/10.1126/sciadv.aaz0742.

  71. Torok MA, Gardiner DM, Shubin NH, Bryant SV. Expression ofHoxDGenes in developing and regenerating axolotl limbs. Dev Biol. 1998;200:225–33.

    Article  CAS  Google Scholar 

  72. Wells KM, Baumel M, McCusker CD. The regulation of growth in developing, homeostatic, and regenerating tetrapod limbs: a minireview. Front Cell Dev Biol. 2022;9:3501.

    Article  Google Scholar 

  73. Kim WS, Stocum DL. Retinoic acid modifies positional memory in the anteroposterior axis of regenerating axolotl limbs. Dev Biol. 1986;114:170–9.

    Article  CAS  Google Scholar 

  74. Stoick-Cooper CL, Moon RT, Weidinger G. Advances in signaling in vertebrate regeneration as a prelude to regenerative medicine. 2007 [cited 2023 Feb 10]; Available from: http://www.genesdev.org/cgi/doi/10.1101/gad.1540507.

  75. Imokawa Y, Yoshizato K. Expression of sonic hedgehog gene in regenerating newt limbs. Wound Repair Regen. 1998;6. https://doi.org/10.1046/j.1524-475x.1998.60412.x

  76. Riddle RD, Johnson RL, Laufer E, Tabin C. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell [Internet]. 1993 [cited 2023 Feb 10];75:1401–16. Available from: https://pubmed.ncbi.nlm.nih.gov/8269518/.

  77. Tickle C, Towers M. Sonic hedgehog signaling in limb development. Front Cell Dev Biol. 2017;5:14.

    Article  Google Scholar 

  78. Purushothaman S, Lopez Aviña BB, Seifert AW. Sonic hedgehog is essential for proximal-distal outgrowth of the limb bud in salamanders. Front Cell Dev Biol. 2022;10:797352.

    Article  Google Scholar 

  79. Zhu J, Patel R, Trofka A, Harfe BD, Mackem S. Sonic hedgehog is not a limb morphogen but acts as a trigger to specify all digits in mice. Dev Cell [Internet]. 2022 [cited 2023 Oct 21];57:2048–2062.e4. Available from: http://www.cell.com/article/S1534580722005470/fulltext.

  80. Foppiano S, Hu D, Marcucio RS. Signaling by bone morphogenetic proteins directs formation of an ectodermal signaling center that regulates craniofacial development. Dev Biol. 2007;312:103–14.

    Article  CAS  Google Scholar 

  81. Drossopoulou G, Lewis KE, Sanz-Ezquerro JJ, Nikbakht N, McMahon AP, Hofmann C, et al. A model for anteroposterior patterning of the vertebrate limb based on sequential long- and short-range Shh signalling and Bmp signalling. Development [Internet]. 2000 [cited 2023 Feb 10];127:1337–48. Available from: https://journals.biologists.com/dev/article/127/7/1337/41132/A-model-for-anteroposterior-patterning-of-the.

  82. Laufer E, Nelson CE, Johnson RL, Morgan BA, Tabin C. Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell. 1994;79:993–1003.

    Article  CAS  Google Scholar 

  83. Geetha-Loganathan P, Nimmagadda S, Huang R, Scaal M, Christ B. Expression pattern of BMPs during chick limb development. Anat Embryol (Berl) [Internet]. 2006 [cited 2023 Feb 10];211:87–93. Available from: https://link.springer.com/article/10.1007/s00429-006-0129-6.

  84. Bastida MF, Sheth R, Ros MA. A BMP-Shh negative-feedback loop restricts Shhexpression during limb development. Development [Internet]. 2009 [cited 2023 Feb 10];136:3779–89. Available from: https://journals.biologists.com/dev/article/136/22/3779/65379/A-BMP-Shh-negative-feedback-loop-restricts.

  85. Bandyopadhyay A, Tsuji K, Cox K, Harfe BD, Rosen V, Tabin CJ. Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet [Internet]. 2006 [cited 2023 Feb 10];2:e216. Available from: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.0020216.

  86. Litingtung Y, Li Y, Fallon JF, Chiang C. Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature 2002 418:6901 [Internet]. 2002 [cited 2023 Feb 10];418:979–83. Available from: https://www.nature.com/articles/nature01033.

  87. Ornitz DM, Marie PJ. Fibroblast growth factor signaling in skeletal development and disease. Genes Dev [Internet]. 2015 [cited 2023 Feb 10];29:1463–86. Available from: https://pubmed.ncbi.nlm.nih.gov/26220993/.

  88. Maddaluno L, Urwyler C, Werner S. Fibroblast growth factors: key players in regeneration and tissue repair. Development [Internet]. 2017 [cited 2023 Feb 10];144:4047–60. Available from: https://journals.biologists.com/dev/article/144/22/4047/48212/Fibroblast-growth-factors-key-players-in.

  89. Zaragosi L, Ailhaud G, Dani C, Zaragosi L, Rard Ailhaud G. Autocrine fibroblast growth factor 2 signaling is critical for self‐renewal of human multipotent adipose‐derived stem cells. Stem Cells [Internet]. 2006 [cited 2023 Feb 10];24:2412–9. Available from: https://academic.oup.com/stmcls/article/24/11/2412/6401542.

  90. Lewandoski M, Sun X, Martin GR. Fgf8 signalling from the AER is essential for normal limb development. Nat Genet 2000 26:4 [Internet]. 2000 [cited 2023 Feb 10];26:460–3. Available from: https://www.nature.com/articles/ng1200_460.

  91. Kim S, Ahn C, Bong N, Choe S, Lee DK. Biphasic effects of FGF2 on adipogenesis. PLoS One [Internet]. 2015 [cited 2023 Feb 10];10:e0120073. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0120073.

  92. Ahn HJ, Lee WJ, Kwack KB, Kwon Y do. FGF2 stimulates the proliferation of human mesenchymal stem cells through the transient activation of JNK signaling. FEBS Lett [Internet]. 2009 [cited 2023 Feb 10];583:2922–6. Available from: https://onlinelibrary.wiley.com/doi/full/10.1016/j.febslet.2009.07.056.

  93. Furukawa S, Yamamoto S, Kashimoto R, Morishita Y, Satoh A. Variable Shh and Fgf8 positioning in regenerating axolotl limb guarantees consistent limb morphogenesis in different limb sizes. bioRxiv [Internet]. 2022 [cited 2023 Feb 10];2022.01.04.475010. Available from: https://www.biorxiv.org/content/10.1101/2022.01.04.475010v2.

  94. Gordon MD, Nusse R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem. 2006;281:22429–33.

    Article  CAS  Google Scholar 

  95. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature 2005 434:7035 [Internet]. 2005 [cited 2023 Feb 10];434:843–50. Available from: https://www.nature.com/articles/nature03319.

  96. Takenaka K, Kise Y, Miki H. GSK3β positively regulates Hedgehog signaling through Sufu in mammalian cells. Biochem Biophys Res Commun. 2007;353:501–8.

    Article  CAS  Google Scholar 

  97. Taylor MD, Zhang X, Liu L, Hui CC, Mainprize TG, Scherer SW, et al. Failure of a medulloblastoma-derived mutant of SUFU to suppress WNT signaling. Oncogene 2004 23:26 [Internet]. 2004 [cited 2023 Feb 10];23:4577–83. Available from: https://www.nature.com/articles/1207605.

  98. te Welscher P, Zuniga A, Kuijper S, Drenth T, Goedemans HJ, Meijlink F, et al. Progression of vertebrate limb development through SHH-mediated counteraction of GLI3. Science (1979) [Internet]. 2002 [cited 2023 Feb 10];298:827–30. Available from: https://www.science.org/doi/10.1126/science.1075620.

  99. Maeda O, Kondo M, Fujita T, Usami N, Fukui T, Shimokata K, et al. Enhancement of GLI1-transcriptional activity by β-catenin in human cancer cells. Oncol Rep [Internet]. 2006 [cited 2023 Feb 10];16:91–6. Available from: http://www.spandidospublications.com/10.3892/or.16.1.91/abstract.

  100. He J, Sheng T, Stelter AA, Li C, Zhang X, Sinha M, et al. Suppressing Wnt signaling by the hedgehog pathway through sFRP-1. J Biol Chem. 2006;281:35598–602.

    Article  CAS  Google Scholar 

  101. Song L, Li ZY, Liu WP, Zhao MR. Crosstalk between Wnt/β-catenin and Hedgehog/Gli signaling pathways in colon cancer and implications for therapy. https://doi.org/10.4161/153840472014972215 [Internet]. 2015 [cited 2023 Feb 10];16:1–7. Available from: https://www.tandfonline.com/doi/abs/10.4161/15384047.2014.972215.

  102. Mullor JL, Dahmane N, Sun T, Altaba AR. Wnt signals are targets and mediators of Gli function. Curr Biol [Internet]. 2001 [cited 2023 Feb 10];11:769–73. Available from: http://www.cell.com/article/S0960982201002299/fulltext.

  103. Schumacher B, Pothof J, Vijg J, Hoeijmakers JHJ. The central role of DNA damage in the ageing process. Nature 2021 592:7856 [Internet]. 2021 [cited 2023 Feb 10];592:695–703. Available from: https://www.nature.com/articles/s41586-021-03307-7.

  104. Jones DL, Rando TA. Emerging models and paradigms for stem cell ageing. Nat Cell Biol [Internet]. 2011 [cited 2023 Feb 10];13:506–12. Available from: https://pubmed.ncbi.nlm.nih.gov/21540846/.

  105. Bryant S V., French V, Bryant PJ. Distal regeneration and symmetry. Science (1979) [Internet]. 1981 [cited 2023 Feb 10];212:993–1002. Available from: https://www.science.org/doi/10.1126/science.212.4498.993.

  106. Brunauer R, Muneoka K. The impact of aging on mechanisms of mammalian epimorphic regeneration. Gerontology [Internet]. 2018 [cited 2023 May 4];64:300–8. Available from: https://karger.com/ger/article/64/3/300/147600/The-Impact-of-Aging-on-Mechanisms-of-Mammalian.

  107. Vieira WA, Wells KM, Mccusker CD. Regenerative section / review advancements to the axolotl model for regeneration and aging. Gerontology [Internet]. 2020 [cited 2023 May 4];66:212–22. Available from: www.karger.com/ger.

  108. Brunauer R, Muneoka K. The impact of aging on mechanisms of mammalian epimorphic regeneration. Gerontology [Internet]. 2018 [cited 2023 Apr 26];64:300–8. Available from: https://www.karger.com/Article/FullText/485320.

  109. Cobiella CE, Haddad FS, Bacarese-Hamilton I. Phalangeal metaplasia following amputation in a child’s finger. Injury [Internet]. 1997 [cited 2023 Feb 10];28:409–10. Available from: https://pubmed.ncbi.nlm.nih.gov/9764246/.

  110. Domingues-Faria C, Vasson MP, Goncalves-Mendes N, Boirie Y, Walrand S. Skeletal muscle regeneration and impact of aging and nutrition. Ageing Res Rev [Internet]. 2016 [cited 2023 May 4];26:22–36. Available from: https://pubmed.ncbi.nlm.nih.gov/26690801/.

  111. Yun MH. Changes in regenerative capacity through lifespan. Int J Mol Sci 2015, Vol 16, Pages 25392–25432 [Internet]. 2015 [cited 2023 Feb 10];16:25392–432. Available from: https://www.mdpi.com/1422-0067/16/10/25392/htm.

  112. Sahin E, Depinho RA. Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 2010 464:7288 [Internet]. 2010 [cited 2023 Feb 10];464:520–8. Available from: https://www.nature.com/articles/nature08982.

  113. Johnston APW, Yuzwa SA, Carr MJ, Mahmud N, Storer MA, Krause MP, et al. Dedifferentiated Schwann cell precursors secreting paracrine factors are required for regeneration of the mammalian digit tip. Cell Stem Cell [Internet]. 2016 [cited 2023 Feb 10];19:433–48. Available from: https://pubmed.ncbi.nlm.nih.gov/27376984/.

  114. Rinkevich Y, Maan ZN, Walmsley GG, Sen SK. Injuries to appendage extremities and digit tips: a clinical and cellular update. Dev Dynamics [Internet]. 2015 [cited 2023 Feb 10];244:641–50. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/dvdy.24265.

  115. Quijano LM, Lynch KM, Allan CH, Badylak SF, Ahsan T. Looking ahead to engineering epimorphic regeneration of a human digit or limb. Tissue Eng Part B Rev [Internet]. 2016 [cited 2023 Feb 10];22:251–62. Available from: https://pubmed.ncbi.nlm.nih.gov/26603349/.

  116. Leigh ND, Dunlap GS, Johnson K, Mariano R, Oshiro R, Wong AY, et al. Transcriptomic landscape of the blastema niche in regenerating adult axolotl limbs at single-cell resolution. Nat Commun 2018 9:1 [Internet]. 2018 [cited 2023 Feb 10];9:1–14. Available from: https://www.nature.com/articles/s41467-018-07604-0.

  117. Debuque RJ, Nowoshilow S, Chan KE, Rosenthal NA, Godwin JW. Distinct toll-like receptor signaling in the salamander response to tissue damage. Dev Dynamics [Internet]. 2022 [cited 2023 Apr 26];251:988–1003. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/dvdy.340

  118. Godwin JW, Pinto AR, Rosenthal NA. Macrophages are required for adult salamander limb regeneration. Proc Natl Acad Sci U S A [Internet]. 2013 [cited 2023 Feb 10];110:9415–20. Available from: https://www.pnas.org/doi/abs/10.1073/pnas.1300290110.

  119. Gawronska-Kozak B. Scarless skin wound healing in FOXN1 deficient (nude) mice is associated with distinctive matrix metalloproteinase expression. Matrix Biol. 2011;30:290–300.

    Article  CAS  Google Scholar 

  120. Manuel JA, Gawronska-Kozak B. Matrix metalloproteinase 9 (MMP-9) is upregulated during scarless wound healing in athymic nude mice. Matrix Biol. 2006;25:505–14.

    Article  CAS  Google Scholar 

  121. Satoh A, makanae A, Hirata A, Satou Y. Blastema induction in aneurogenic state and Prrx-1 regulation by MMPs and FGFs in Ambystoma mexicanum limb regeneration. Dev Biol [Internet]. 2011 [cited 2023 Feb 10];355:263–74. Available from: https://pubmed.ncbi.nlm.nih.gov/21539833/.

  122. Satoh A, Graham GMC, Bryant S v., Gardiner DM. Neurotrophic regulation of epidermal dedifferentiation during wound healing and limb regeneration in the axolotl (Ambystoma mexicanum). Dev Biol [Internet]. 2008 [cited 2023 Feb 10];319:321–35. Available from: https://pubmed.ncbi.nlm.nih.gov/18533144/.

  123. Gordon H, Brockes JP, Wilson F. Appearance and regulation of an antigen associated with limb regeneration in Notophthalmus viridescens. J Exp Zool [Internet]. 1988 [cited 2023 Feb 10];247:232–43. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/jez.1402470306.

  124. Lévesque M, Gatien S, Finnson K, Desmeules S, Villiard É, Pilote M, et al. Transforming growth factor: β signaling is essential for limb regeneration in axolotls. PLoS One [Internet]. 2007 [cited 2023 Feb 10];2:e1227. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0001227.

  125. Pakyari M, Farrokhi A, Maharlooei MK, Ghahary A. Critical role of transforming growth factor beta in different phases of wound healing. https://home.liebertpub.com/wound [Internet]. 2013 [cited 2023 Apr 26];2:215–24. Available from: https://www.liebertpub.com/doi/10.1089/wound.2012.0406

  126. Hinz B. Formation and function of the myofibroblast during tissue repair. J Invest Dermatol [Internet]. 2007 [cited 2023 Feb 10];127:526–37. Available from: https://pubmed.ncbi.nlm.nih.gov/17299435/.

  127. Seifert A, Monaghan J, Voss R, Maden M. Skin regeneration in adult axolotls: a blueprint for scar-free healing in vertebrates. PLoS One [Internet]. 2012 [cited 2023 Feb 10];7:e32875. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0032875.

  128. Galton VA. The role of thyroid hormone in amphibian metamorphosis. Trends Endocrinol Metab. 1992;3:96–100.

    Article  CAS  Google Scholar 

  129. Monaghan JR, Stier AC, Michonneau F, Smith MD, Pasch B, Maden M, et al. Experimentally induced metamorphosis in axolotls reduces regenerative rate and fidelity. Regeneration [Internet]. 2014 [cited 2023 Feb 10];1:2–14. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/reg2.8.

  130. Tanaka HV, Ng NCY, Yang Yu Z, Casco-Robles MM, Maruo F, Tsonis PA, et al. A developmentally regulated switch from stem cells to dedifferentiation for limb muscle regeneration in newts. Nat Commun 2016 7:1 [Internet]. 2016 [cited 2023 Feb 10];7:1–8. Available from: https://www.nature.com/articles/ncomms11069.

  131. Herrera-Rincon C, Golding AS, Moran KM, Harrison C, Martyniuk CJ, Guay JA, et al. Brief local application of progesterone via a wearable bioreactor induces long-term regenerative response in adult xenopus hindlimb. Cell Rep. 2018;25:1593-1609.e7.

    Article  CAS  Google Scholar 

  132. Iismaa SE, Kaidonis X, Nicks AM, Bogush N, Kikuchi K, Naqvi N, et al. Comparative regenerative mechanisms across different mammalian tissues. npj Regen Med 2018 3:1 [Internet]. 2018 [cited 2023 Apr 26];3:1–20. Available from: https://www.nature.com/articles/s41536-018-0044-5.

  133. Shieh S, Cheng T. Regeneration and repair of human digits and limbs: fact and fiction. Regeneration (Oxf) [Internet]. 2015 [cited 2023 Feb 10];2:149–68. Available from: https://pubmed.ncbi.nlm.nih.gov/27499873/.

  134. Alibardi L. Review: Limb regeneration in humans: dream or reality? Ann Anat [Internet]. 2018 [cited 2023 Feb 10];217:1–6. Available from: https://pubmed.ncbi.nlm.nih.gov/29408367/.

  135. Lu HH, Cooper JA, Manuel S, Freeman JW, Attawia MA, Ko FK, et al. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomaterials. 2005;26:4805–16.

    Article  CAS  Google Scholar 

  136. Tang X, Saveh-Shemshaki N, Kan HM, Khan Y, Laurencin CT. Biomimetic electroconductive nanofibrous matrices for skeletal muscle regenerative engineering. Regen Eng Transl Med [Internet]. 2020 [cited 2023 Feb 10];6:228–37. Available from: https://link.springer.com/article/10.1007/s40883-019-00136-z.

  137. Liu Y, Dzidotor G, Le TT, Vinikoor T, Morgan K, Curry EJ, et al. Exercise-induced piezoelectric stimulation for cartilage regeneration in rabbits. Sci Transl Med [Internet]. 2022 [cited 2023 Feb 10];14:7282. Available from: https://www.science.org/doi/10.1126/scitranslmed.abi7282.

  138. Mengsteab PY, Otsuka T, McClinton A, Shemshaki NS, Shah S, Kan HM, et al. Mechanically superior matrices promote osteointegration and regeneration of anterior cruciate ligament tissue in rabbits. Proc Natl Acad Sci U S A [Internet]. 2020 [cited 2023 Feb 10];117:28655–66. Available from: https://www.pnas.org/doi/abs/10.1073/pnas.2012347117.

  139. Peach MS, Ramos DM, James R, Morozowich NL, Mazzocca AD, Doty SB, et al. Engineered stem cell niche matrices for rotator cuff tendon regenerative engineering. PLoS One [Internet]. 2017 [cited 2023 Feb 10];12:e0174789. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0174789.

  140. Lukomska B, Stanaszek L, Zuba-Surma E, Legosz P, Sarzynska S, Drela K. Challenges and controversies in human mesenchymal stem cell therapy. Stem Cells Int. 2019. https://doi.org/10.1155/2019/9628536

  141. Lin G, Chen Y, Slack JMW. Imparting regenerative capacity to limbs by progenitor cell transplantation. Dev Cell. 2013;24:41–51.

    Article  CAS  Google Scholar 

  142. Chen Y, Xu H, Lin G. Generation of iPSC-derived limb progenitor-like cells for stimulating phalange regeneration in the adult mouse. Cell Disc 2017 3:1 [Internet]. 2017 [cited 2023 Feb 10];3:1–14. Available from: https://www.nature.com/articles/celldisc201746.

  143. Zielins ER, Ransom RC, Leavitt TE, Longaker MT, Wan DC. The role of stem cells in limb regeneration. Organogenesis [Internet]. 2016 [cited 2023 Apr 27];12:16. Available from: /pmc/articles/PMC4882123/

  144. Dawson LA, Yu L, Yan M, Marrero L, Schanes PP, Dolan C, et al. The periosteal requirement and temporal dynamics of BMP2-induced middle phalanx regeneration in the adult mouse. Regeneration [Internet]. 2017 [cited 2023 Feb 10];4:140–50. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/reg2.81.

  145. Seyedhassantehrani N, Otsuka T, Singh S, Gardiner DM. The axolotl limb regeneration model as a discovery tool for engineering the stem cell niche. Curr Stem Cell Rep [Internet]. 2017 [cited 2023 Feb 10];3:156–63. Available from: https://link.springer.com/article/10.1007/s40778-017-0085-5.

  146. McMahon MA, Rahdar M, Porteus M. Gene editing: not just for translation anymore. Nature Methods 2012 9:1 [Internet]. 2011 [cited 2023 Apr 27];9:28–31. Available from: https://www.nature.com/articles/nmeth.1811.

  147. Flowers GP, Sanor LD, Crews CM. Lineage tracing of genome-edited alleles reveals high fidelity axolotl limb regeneration. Elife. 2017;6. https://doi.org/10.7554/eLife.25726

  148. Fei JF, Schuez M, Knapp D, Taniguchi Y, Drechsel DN, Tanaka EM. Efficient gene knockin in axolotl and its use to test the role of satellite cells in limb regeneration. Proc Natl Acad Sci U S A [Internet]. 2017 [cited 2023 Feb 10];114:12501–6. Available from: https://www.pnas.org/doi/abs/10.1073/pnas.1706855114.

  149. Shyh-Chang N, Zhu H, Yvanka De Soysa T, Shinoda G, Seligson MT, Tsanov KM, et al. Lin28 enhances tissue repair by reprogramming cellular metabolism. Cell. 2013;155:778–92.

    Article  CAS  Google Scholar 

  150. Taghiyar L, Hesaraki M, Sayahpour FA, Satarian L, Hosseini S, Aghdami N, et al. Msh homeobox 1 (Msx1)- and Msx2-overexpressing bone marrow-derived mesenchymal stem cells resemble blastema cells and enhance regeneration in mice. J Biol Chem. 2017;292:10520–33.

    Article  CAS  Google Scholar 

  151. Abnave P, Ghigo E. Role of the immune system in regeneration and its dynamic interplay with adult stem cells. Semin Cell Dev Biol. 2019;87:160–8.

    Article  CAS  Google Scholar 

  152. Bijarchian F, Taghiyar L, Azhdari Z, Eslaminejad MB. M2c macrophages enhance phalange regeneration of amputated mice digits in an organ co-culture system. Iran J Basic Med Sci [Internet]. 2021 [cited 2023 Feb 10];24:1602–12. Available from: https://pubmed.ncbi.nlm.nih.gov/35317116/.

  153. Becker RO, Spadaro JA. Electrical stimulation of partial limb regeneration in mammals. Bull N Y Acad Med [Internet]. 1972 [cited 2023 Feb 10];48:627. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1806700/.

  154. Leppik LP, Froemel D, Slavici A, Ovadia ZN, Hudak L, Henrich D, et al. Effects of electrical stimulation on rat limb regeneration, a new look at an old model. Sci Rep 2015 5:1 [Internet]. 2015 [cited 2023 Feb 10];5:1–9. Available from: https://www.nature.com/articles/srep18353.

  155. Minarelli J, Davis EL, Dickerson A, Moore WC, Mejia JA, Gugala Z, et al. Characterization of neuromas in peripheral nerves and their effects on heterotopic bone formation. Mol Pain [Internet]. 2019 [cited 2023 Oct 20];15. Available from: /pmc/articles/PMC6440042/.

  156. Oliveira KMC, Barker JH, Berezikov E, Pindur L, Kynigopoulos S, Eischen-Loges M, et al. Electrical stimulation shifts healing/scarring towards regeneration in a rat limb amputation model. Sci Rep 2019 9:1 [Internet]. 2019 [cited 2023 Feb 10];9:1–14. Available from: https://www.nature.com/articles/s41598-019-47389-w.

  157. e Silva EP, Huang B, Helaehil J v., Nalesso PRL, Bagne L, de Oliveira MA, et al. In vivo study of conductive 3D printed PCL/MWCNTs scaffolds with electrical stimulation for bone tissue engineering. Biodes Manuf [Internet]. 2021 [cited 2023 Feb 10];4:190–202. Available from: https://link.springer.com/article/10.1007/s42242-020-00116-1.

  158. Guo BS, Cheung KK, Yeung SS, Zhang BT, Yeung EW. Electrical stimulation influences satellite cell proliferation and apoptosis in unloading-induced muscle atrophy in mice. PLoS One [Internet]. 2012 [cited 2023 Feb 10];7:e30348. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0030348.

  159. Fernandez-Yague MA, Trotier A, Demir S, Abbah SA, Larrañaga A, Thirumaran A, et al. A self-powered piezo-bioelectric device regulates tendon repair-associated signaling pathways through modulation of mechanosensitive ion channels. Adv Mater [Internet]. 2022 [cited 2023 Feb 10];34:2201543. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0030348.

  160. Liu Y, Dzidotor G, Le TT, Vinikoor T, Morgan K, Curry EJ, et al. Exercise-induced piezoelectric stimulation for cartilage regeneration in rabbits. Sci Transl Med [Internet]. 2022 [cited 2023 Feb 10];14. Available from: https://pubmed.ncbi.nlm.nih.gov/35020409/.

  161. Zhang J, Zhang X, Wang C, Li F, Qiao Z, Zeng L, et al. Conductive composite fiber with optimized alignment guides neural regeneration under electrical stimulation. Adv Healthc Mater [Internet]. 2021 [cited 2023 Feb 10];10:2000604. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/adhm.202000604.

  162. Moffat KL, Wang INE, Rodeo SA, Lu HH. Orthopedic interface tissue engineering for the biological fixation of soft tissue grafts. Clin Sports Med. 2009;28:157–76.

    Article  Google Scholar 

  163. Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials. 2020;226:119536.

    Article  CAS  Google Scholar 

  164. Bourget J-M, Guillemette M, Veres T, Auger FA, Germain L, Bourget J-M, et al. Alignment of cells and extracellular matrix within tissue- engineered substitutes. Adv Biomater Sci Biomed Appl [Internet]. 2013 [cited 2023 Feb 10]; Available from: https://www.intechopen.com/chapters/43740.

  165. Merceron TK, Burt M, Seol YJ, Kang HW, Lee SJ, Yoo JJ, et al. A 3D bioprinted complex structure for engineering the muscle–tendon unit. Biofabrication [Internet]. 2015 [cited 2023 Feb 10];7:035003. Available from: https://iopscience.iop.org/article/10.1088/1758-5090/7/3/035003.

  166. Tarafder S, Brito JA, Minhas S, Effiong L, Thomopoulos S, Lee CH. In situ tissue engineering of the tendon-to-bone interface by endogenous stem/progenitor cells. Biofabrication [Internet]. 2019 [cited 2023 Feb 10];12:015008. Available from: https://iopscience.iop.org/article/10.1088/1758-5090/ab48ca.

  167. Sonnylal S, Shi-wen X, Leoni P, Naff K, Van Pelt CS, Nakamura H, et al. Selective expression of connective tissue growth factor in fibroblasts in vivo promotes systemic tissue fibrosis. Arthritis Rheum [Internet]. 2010 [cited 2023 Oct 20];62:1523–32. Available from: https://pubmed.ncbi.nlm.nih.gov/20213804/.

  168. Tian L, Ma J, Li W, Zhang X, Gao X. Microfiber fabricated via microfluidic spinning toward tissue engineering applications. Macromol Biosci [Internet]. 2023 [cited 2023 Apr 27];23:2200429. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/mabi.202200429.

  169. Jiang T, Carbone EJ, Lo KWH, Laurencin CT. Electrospinning of polymer nanofibers for tissue regeneration. Prog Polym Sci. 2015;46:1–24.

    Article  Google Scholar 

  170. Chen W. Electroconformational denaturation of membrane proteins. Ann N Y Acad Sci [Internet]. 2006 [cited 2023 Feb 10];1066:92–105. Available from: https://onlinelibrary.wiley.com/doi/full/10.1196/annals.1363.028.

  171. Hosseini FS, Laurencin CT. Advanced electrospun nanofibrous stem cell niche for bone regenerative engineering. Regen Eng Transl Med [Internet]. 2022 [cited 2023 Feb 10];1–16. Available from: https://link.springer.com/article/10.1007/s40883-022-00274-x.

  172. Ogueri KS, Laurencin CT. Nanofiber technology for regenerative engineering. ACS Nano [Internet]. 2020 [cited 2023 Feb 10];14:9347–63. Available from: https://pubs.acs.org/doi/full/10.1021/acsnano.0c03981.

  173. Lüken A, Geiger M, Steinbeck L, Joel A-C, Lampert A, Linkhorst J, et al. Biocompatible micron-scale silk fibers fabricated by microfluidic wet spinning. Adv Healthc Mater [Internet]. 2021 [cited 2023 Feb 10];10:2100898. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/adhm.202100898.

  174. Koeck KS, Salehi S, Humenik M, Scheibel T, Koeck KS, Salehi S, et al. Processing of continuous non-crosslinked collagen fibers for microtissue formation at the muscle-tendon interface. Adv Funct Mater [Internet]. 2022 [cited 2023 Feb 10];32:2112238. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202112238.

  175. Calejo I, Costa-Almeida R, Reis RL, Gomes ME. A textile platform using continuous aligned and textured composite microfibers to engineer tendon-to-bone interface gradient scaffolds. Adv Healthc Mater [Internet]. 2019 [cited 2023 Feb 10];8:1900200. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/adhm.201900200.

  176. Barajaa MA, Nair LS, Laurencin CT, van Dusen Distinguished Professor of Orthopedic Surgery W, Sackler B. Robust phenotypic maintenance of limb cells during heterogeneous culture in a physiologically relevant polymeric-based constructed graft system. Sci Rep 2020 10:1 [Internet]. 2020 [cited 2023 Feb 10];10:1–15. Available from: https://www.nature.com/articles/s41598-020-68658-z.

  177. Daniel Pedde R, Mirani B, Navaei A, Styan T, Wong S, Mehrali M, et al. Emerging biofabrication strategies for engineering complex tissue constructs. Adv Mater [Internet]. 2017 [cited 2023 Apr 27];29:1606061. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201606061.

  178. Jiang X, Kong Y, Kuss M, Weisenburger J, Haider H, Harms R, et al. 3D bioprinting of multilayered scaffolds with spatially differentiated ADMSCs for rotator cuff tendon-to-bone interface regeneration. Appl Mater Today. 2022;27:101510.

    Article  Google Scholar 

  179. Cao Y, Yang S, Zhao D, Li Y, Cheong SS, Han D, et al. Three-dimensional printed multiphasic scaffolds with stratified cell-laden gelatin methacrylate hydrogels for biomimetic tendon-to-bone interface engineering. J Orthop Translat. 2020;23:89–100.

    Article  Google Scholar 

  180. Laternser S, Keller H, Leupin O, Rausch M, Graf-Hausner U, Rimann M. A novel microplate 3D bioprinting platform for the engineering of muscle and tendon tissues. SLAS Technol [Internet]. 2018 [cited 2023 Feb 11];23:599–613. Available from: https://pubmed.ncbi.nlm.nih.gov/29895208/.

  181. Chae S, Yong U, Park W, Choi Y, Jeon IH, Kang H, et al. 3D cell-printing of gradient multi-tissue interfaces for rotator cuff regeneration. Bioact Mater. 2023;19:611–25.

    Google Scholar 

  182. Nowlin J, Bismi MA, Delpech B, Dumas P, Zhou Y, Tan GZ. Engineering the hard–soft tissue interface with random-to-aligned nanofiber scaffolds. https://doi.org/10.1177/1849543518803538 [Internet]. 2018 [cited 2023 Feb 11];5:184954351880353. Available from: https://journals.sagepub.com/doi/10.1177/1849543518803538.

  183. Ladd MR, Lee SJ, Stitzel JD, Atala A, Yoo JJ. Co-electrospun dual scaffolding system with potential for muscle–tendon junction tissue engineering. Biomaterials. 2011;32:1549–59.

    Article  CAS  Google Scholar 

  184. Kim WJ, Kim GH. A bioprinted complex tissue model for myotendinous junction with biochemical and biophysical cues. Bioeng Transl Med [Internet]. 2022 [cited 2023 Feb 11];7:e10321. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/btm2.10321.

  185. Xie X, Cai J, Yao Y, Chen Y, Khan AR, Wu J, et al. A woven scaffold with continuous mineral gradients for tendon-to-bone tissue engineering. Compos B Eng. 2021;212:108679.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Debolina Ghosh for her helpful insights and for editing this manuscript. Original images were created using Biorender.

Funding

This work is supported by NIH/NIAMS T32AR079114 (to CTL), NIH Building Infrastructure to Diversity (BUILD) TL4GM118971 and funding from Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Amir Abbas Abedini contributed to writing, conception, and figure preparation. Fatemeh Hosseini contributed to writing and figure preparation. The corresponding author of this work is Dr. Cato T. Laurencin, who also oversaw the drafting of the manuscript.

Corresponding author

Correspondence to Cato T. Laurencin.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Description of Future Works

Future research should focus on employing regenerative engineering to regenerate a limb and conducting appropriate in vitro and in vivo studies to demonstrate the efficiency of this approach.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedini, A.A., Hosseini, F. & Laurencin, C.T. Regenerative Engineering of a Limb: From Amputation to Regeneration. Regen. Eng. Transl. Med. (2023). https://doi.org/10.1007/s40883-023-00323-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40883-023-00323-z

Keywords

Navigation