Skip to main content

Advertisement

Log in

Short Interfering RNA (siRNA)-Based Therapeutics for Cartilage Diseases

  • Review
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

Articular cartilage injury, as a hallmark of arthritic diseases, is difficult to repair and causes joint pain, stiffness, and loss of mobility. Over the years, the most significant problems for the drug-based treatment of arthritis have been related to drug administration and delivery. In recent years, much research has been devoted to developing new strategies for repairing or regenerating the damaged osteoarticular tissue. The RNA interference (RNAi) has been suggested to have the potential for implementation in targeted therapy in which the faulty gene can be edited by delivering its complementary short interfering RNA (siRNA) at the posttranscriptional stage. The successful editing of a specific gene by the delivered siRNA might slow or halt osteoarthritic diseases without side effects caused by chemical inhibitors. However, cartilage siRNA delivery remains a challenging objective because cartilage is an avascular and very dense tissue with very low permeability. Furthermore, RNA is prone to degradation by serum nucleases (such as RNase H and RNase A) due to an extra hydroxyl group in its phosphodiester backbone. Therefore, successful delivery is the first and most crucial requirement for efficient RNAi therapy. Nanomaterials have emerged as highly advantage tools for these studies, as they can be engineered to protect siRNA from degrading, address barriers in siRNA delivery to joints, and target specific cells. This review will discuss recent breakthroughs of different siRNA delivery technologies for cartilage diseases.

Lay Summary

Articular cartilage breakdown is a hallmark of osteoarthritis, which is difficult to repair and treat. Currently, there is no disease-modifying therapeutic approved by FDA to treat osteoarthritis. In recent years, RNAi drugs have been suggested to have the potential for repairing or regenerating the damaged articular cartilage. However, the effective delivery of small RNAs remains a significant challenge. To overcome these obstacles, nanomaterial delivery systems including polymers, lipids, peptides, and oligonucleotide nanoparticles have been developed to enhance the effectiveness of RNAi drugs. Here, we review recent progress in using nanomaterials to deliver small RNAs for cartilage disease therapeutics. In the future, nanomaterials can be specifically designed to form small-sized delivery vehicles with excellent penetration properties. RNAi therapeutics based on these nanomaterials will have great promise to treat cartilage diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Felson DT, Zhang YQ. An update on the epidemiology of knee and hip osteoarthritis with a view to prevention. Arthritis Rheum. 1998;41(8):1343–55.

    Article  CAS  Google Scholar 

  2. Strombeck B, Petersson IF, Vlieland TPMV, Grp ENW. Health care quality indicators on the management of rheumatoid arthritis and osteoarthritis: a literature review. Rheumatology. 2013;52(2):382–90.

    Article  Google Scholar 

  3. Bajpayee AG, Grodzinsky AJ. Cartilage-targeting drug delivery: can electrostatic interactions help? Nat Rev Rheumatol. 2017;13(3):183–93.

    Article  CAS  Google Scholar 

  4. Rothenfluh DA, Bermudez H, O'Neil CP, Hubbell JA. Biofunctional polymer nanoparticles for intra-articular targeting and retention in cartilage. Nat Mater. 2008;7(3):248–54.

    Article  CAS  Google Scholar 

  5. Gary DJ, Puri N, Won YY. Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J Control Release. 2007;121(1–2):64–73.

    Article  CAS  Google Scholar 

  6. Fire A, Xu SQ, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–11.

    Article  CAS  Google Scholar 

  7. Wang SW, Wei XC, Sun XJ, Chen CW, Zhou JM, Zhang G, et al. A novel therapeutic strategy for cartilage diseases based on lipid nanoparticle-RNAi delivery system. Int J Nanomedicine. 2018;13:617–31.

    Article  CAS  Google Scholar 

  8. Zhang G, Guo BS, Wu H, Tang T, Zhang BT, Zheng LZ, et al. A delivery system targeting bone formation surfaces to facilitate RNAi-based anabolic therapy. Nat Med. 2012;18(2):307–14.

    Article  CAS  Google Scholar 

  9. Abdallah B, Hassan A, Benoist C, Goula D, Behr JP, Demeneix BA. A powerful nonviral vector for in vivo gene transfer into the adult mammalian brain: Polyethylenimine. Hum Gene Ther. 1996;7(16):1947–54.

    Article  CAS  Google Scholar 

  10. Trubetskoy VS, Torchilin VP, Kennel SJ, Huang L. Use of N-terminal modified poly(L-lysine) antibody conjugate as a carrier for targeted gene delivery in mouse lung endothelial-cells. Bioconjug Chem. 1992;3(4):323–7.

    Article  CAS  Google Scholar 

  11. Cho C-S. Design and development of degradable polyethylenimines for delivery of DNA and small interfering RNA: an updated review. ISRN Mater Sci. 2012;2012:1–24.

    Article  CAS  Google Scholar 

  12. Cao HQ, Jiang X, Chai C, Chew SY. RNA interference by nanofiber-based siRNA delivery system. J Control Release. 2010;144(2):203–12.

    Article  CAS  Google Scholar 

  13. Liu L, Zheng M, Librizzi D, Renette T, Merkel OM, Kissel T. Efficient and tumor targeted siRNA delivery by polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol)-folate (PEI-PCL-PEG-Fol). Mol Pharm. 2016;13(1):134–43.

    Article  CAS  Google Scholar 

  14. Feng CL, Han YX, Guo HH, Ma XL, Wang ZQ, Wang LL, et al. Self-assembling HA/PEI/dsRNA-p21 ternary complexes for CD44 mediated small active RNA delivery to colorectal cancer. Drug Deliv. 2017;24(1):1537–48.

    Article  CAS  Google Scholar 

  15. Sezlev Bilecen D, Uludag H, Hasirci V. Development of PEI-RANK siRNA complex loaded PLGA nanocapsules for the treatment of osteoporosis. Tissue Eng Part A. 2019;25(1–2):34–43.

    Article  CAS  Google Scholar 

  16. Zhang SB, Xu YM, Wang B, Qiao WH, Liu DL, Li ZS. Cationic compounds used in lipoplexes and polyplexes for gene delivery. J Control Release. 2004;100(2):165–80.

    Article  CAS  Google Scholar 

  17. Guo JF, Cheng WP, Gu JX, Ding CX, Qu XZ, Yang ZZ, et al. Systemic delivery of therapeutic small interfering RNA using a pH-triggered amphiphilic poly-L-lysine nanocarrier to suppress prostate cancer growth in mice. Eur J Pharm Sci. 2012;45(5):521–32.

    Article  CAS  Google Scholar 

  18. Hartono SB, Gu WY, Kleitz F, Liu J, He LZ, Middelberg APJ, et al. Poly-L-lysine functionalized large pore cubic mesostructured silica nanoparticles as biocompatible carriers for gene delivery. ACS Nano. 2012;6(3):2104–17.

    Article  CAS  Google Scholar 

  19. Inoue Y, Kurihara R, Tsuchida A, Hasegawa M, Nagashima T, Mori T, et al. Efficient delivery of siRNA using dendritic poly(L-lysine) for loss-of-function analysis. J Control Release. 2008;126(1):59–66.

    Article  CAS  Google Scholar 

  20. Boussif O, Lezoualch F, Zanta MA, Mergny MD, Scherman D, Demeneix B, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in-vivo - polyethylenimine. P Natl Acad Sci USA. 1995;92(16):7297–301.

    Article  CAS  Google Scholar 

  21. Rodriguez M, Lapierre J, Ojha CR, Kaushik A, Batrakova E, Kashanchi F, et al. Intranasal drug delivery of small interfering RNA targeting Beclin1 encapsulated with polyethylenimine (PEI) in mouse brain to achieve HIV attenuation. Sci Rep. 2017;7(1):1862.

    Article  CAS  Google Scholar 

  22. Urban-Klein B, Werth S, Abuharbeid S, Czubayko F, Aigner A. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 2005;12(5):461–6.

    Article  CAS  Google Scholar 

  23. Lacave JM, Fanjul A, Bilbao E, Gutierrez N, Barrio I, Arostegui I, et al. Acute toxicity, bioaccumulation and effects of dietary transfer of silver from brine shrimp exposed to PVP/PEI-coated silver nanoparticles to zebrafish. Comp Biochem Physiol C Toxicol Pharmacol. 2017;199:69–80.

    Article  CAS  Google Scholar 

  24. Israel LL, Lellouche E, Ostrovsky S, Yarmiayev V, Bechor M, Michaeli S, et al. Acute in vivo toxicity mitigation of PEI-coated maghemite nanoparticles using controlled oxidation and surface modifications toward siRNA delivery. ACS Appl Mater Interfaces. 2015;7(28):15240–55.

    Article  CAS  Google Scholar 

  25. Breunig M, Hozsa C, Lungwitz U, Watanabe K, Umeda I, Kato H, et al. Mechanistic investigation of poly(ethylene imine)-based siRNA delivery: disulfide bonds boost intracellular release of the cargo. J Control Release. 2008;130(1):57–63.

    Article  CAS  Google Scholar 

  26. Wen YT, Pan SR, Luo X, Zhang X, Zhang W, Feng M. A biodegradable low molecular weight polyethylenimine derivative as low toxicity and efficient gene vector. Bioconjug Chem. 2009;20(2):322–32.

    Article  CAS  Google Scholar 

  27. Zhang TT, Bai XH, Mao XH. Systemic delivery of small interfering RNA targeting the interleukin-2/15 receptor beta chain prevents disease progression in experimental arthritis. PLoS One. 2013;8(11):e78619.

    Article  CAS  Google Scholar 

  28. Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release. 2006;114(1):100–9.

    Article  CAS  Google Scholar 

  29. Shi Q, Rondon-Cavanzo EP, Dalla Picola IP, Tiera MJ, Zhang XL, Dai KR, et al. In vivo therapeutic efficacy of TNF alpha silencing by folate-PEG-chitosan-DEAE/siRNA nanoparticles in arthritic mice. Int J Nanomedicine. 2018;13:387–402.

    Article  CAS  Google Scholar 

  30. Howard KA, Rahbek UL, Liu X, Damgaard CK, Glud SZ, Andersen MO, et al. RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther. 2006;14(4):476–84.

    Article  CAS  Google Scholar 

  31. Raftery R, O'Brien FJ, Cryan SA. Chitosan for gene delivery and orthopedic tissue engineering applications. Molecules. 2013;18(5):5611–47.

    Article  CAS  Google Scholar 

  32. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, et al. Lipofection - a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A. 1987;84(21):7413–7.

    Article  CAS  Google Scholar 

  33. Kesharwani P, Gajbhiye V, Jain NK. A review of nanocarriers for the delivery of small interfering RNA. Biomaterials. 2012;33(29):7138–50.

    Article  CAS  Google Scholar 

  34. Xue HY, Guo P, Wen WC, Wong HL. Lipid-based nnocarriers for RNA delivery. Curr Pharm Des. 2015;21(22):3140–7.

    Article  CAS  Google Scholar 

  35. Parashar D, Rajendran V, Shukla R, Sistla R. Lipid-based nanocarriers for delivery of small interfering RNA for therapeutic use. Eur J Pharm Sci. 2020;142:105159.

    Article  CAS  Google Scholar 

  36. Xu YH, Szoka FC. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry-Us. 1996;35(18):5616–23.

    Article  CAS  Google Scholar 

  37. Wittrup A, Ai A, Liu X, Hamar P, Trifonova R, Charisse K, et al. Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown. Nat Biotechnol. 2015;33(8):870–6.

    Article  CAS  Google Scholar 

  38. Burnett JC, Rossi JJ. RNA-based therapeutics: current progress and future prospects. Chem Biol. 2012;19(1):60–71.

    Article  CAS  Google Scholar 

  39. Semple SC, Akinc A, Chen JX, Sandhu AP, Mui BL, Cho CK, et al. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. 2010;28(2):172-U18.

    Article  CAS  Google Scholar 

  40. Schroeder A, Levins CG, Cortez C, Langer R, Anderson DG. Lipid-based nanotherapeutics for siRNA delivery. J Intern Med. 2010;267(1):9–21.

    Article  CAS  Google Scholar 

  41. Huang L, Liu Y. In vivo delivery of RNAi with lipid-based nanoparticles. Annu Rev Biomed Eng. 2011;13:507–30.

    Article  CAS  Google Scholar 

  42. Tseng YC, Mozumdar S, Huang L. Lipid-based systemic delivery of siRNA. Adv Drug Deliv Rev. 2009;61(9):721–31.

    Article  CAS  Google Scholar 

  43. Kanasty R, Dorkin JR, Vegas A, Anderson D. Delivery materials for siRNA therapeutics. Nat Mater. 2013;12(11):967–77.

    Article  CAS  Google Scholar 

  44. Kolli S, Wong SP, Harbottle R, Johnston B, Thanou M, Miller AD. pH-triggered nanoparticle mediated delivery of siRNA to liver cells in vitro and in vivo. Bioconjug Chem. 2013;24(3):314–32.

    Article  CAS  Google Scholar 

  45. Lin SY, Zhao WY, Tsai HC, Hsu WH, Lo CL, Hsiue GH. Sterically polymer-based liposomal complexes with dual-Shell structure for enhancing the siRNA delivery. Biomacromolecules. 2012;13(3):664–75.

    Article  CAS  Google Scholar 

  46. Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell. 1988;55(6):1189–93.

    Article  CAS  Google Scholar 

  47. Endoh T, Ohtsuki T. Cellular siRNA delivery using cell-penetrating peptides modified for endosomal escape. Adv Drug Deliv Rev. 2009;61(9):704–9.

    Article  CAS  Google Scholar 

  48. Meade BR, Dowdy SF. Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides. Adv Drug Deliv Rev. 2007;59(2–3):134–40.

    Article  CAS  Google Scholar 

  49. Ullah I, Chung K, Beloor J, Kim J, Cho M, Kim N, et al. Trileucine residues in a ligand-CPP-based siRNA delivery platform improve endosomal escape of siRNA. J Drug Target. 2017;25(4):320–9.

    Article  CAS  Google Scholar 

  50. Simeoni F, Morris MC, Heitz F, Divita G. Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res. 2003;31(11):2717–24.

    Article  CAS  Google Scholar 

  51. Oehlke J, Scheller A, Wiesner B, Krause E, Beyermann M, Klauschenz E, et al. Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Bba-Biomembranes. 1998;1414(1–2):127–39.

    Article  CAS  Google Scholar 

  52. Ye J, Liu E, Gong J, Wang J, Huang Y, He H, et al. High-yield synthesis of monomeric LMWP(CPP)-siRNA covalent conjugate for effective cytosolic delivery of siRNA. Theranostics. 2017;7(9):2495–508.

    Article  CAS  Google Scholar 

  53. Xie X, Yang Y, Lin W, Liu H, Liu H, Yang Y, et al. Cell-penetrating peptide-siRNA conjugate loaded YSA-modified nanobubbles for ultrasound triggered siRNA delivery. Colloids Surf B: Biointerfaces. 2015;136:641–50.

    Article  CAS  Google Scholar 

  54. Lee SH, Kang YY, Jang HE, Mok H. Current preclinical small interfering RNA (siRNA)-based conjugate systems for RNA therapeutics. Adv Drug Deliv Rev. 2016;104:78–92.

    Article  CAS  Google Scholar 

  55. Bolhassani A. Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer. Biochim Biophys Acta Rev Cancer. 2011;1816(2):232–46.

    Article  CAS  Google Scholar 

  56. Bhatia D, Surana S, Chakraborty S, Koushika SP, Krishnan Y. A synthetic icosahedral DNA-based host-cargo complex for functional in vivo imaging. Nat Commun. 2011;2.

  57. Keum JW, Ahn JH, Bermudez H. Design, assembly, and activity of antisense DNA nanostructures. Small. 2011;7(24):3529–35.

    Article  CAS  Google Scholar 

  58. Chen YP, Song S, Yan ZM, Fenniri H, Webster TJ. Self-assembled rosette nanotubes encapsulate and slowly release dexamethasone. Int J Nanomedicine. 2011;6:1035–44.

    CAS  Google Scholar 

  59. Song S, Chen YP, Yan ZM, Fenniri H, Webster TJ. Self-assembled rosette nanotubes for incorporating hydrophobic drugs in physiological environments. Int J Nanomedicine. 2011;6:101–7.

    CAS  Google Scholar 

  60. Lee H, Lytton-Jean AK, Chen Y, Love KT, Park AI, Karagiannis ED, et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nanotechnol. 2012;7(6):389–93.

    Article  CAS  Google Scholar 

  61. Shu Y, Shu D, Haque F, Guo PX. Fabrication of pRNA nanoparticles to deliver therapeutic RNAs and bioactive compounds into tumor cells. Nat Protoc. 2013;8(9):1635–59.

    Article  CAS  Google Scholar 

  62. Sun X, Chen Y, Yu H, Machan JT, Alladin A, Ramirez J, et al. Anti-miRNA oligonucleotide therapy for chondrosarcoma. Mol Cancer Ther. 2019;18(11):2021–9.

    Article  CAS  Google Scholar 

  63. Webster TJ, Chen Q, Chen Y, Fenniri H, Hemraz UD. Nanotubes as carriers of nucleic acids into cells. US10364440B2, 2014.

  64. Chen Q, Chen Y, Yu H, Ehrlich MG. Nanocarriers And Their Processing For Diagnostics And Therapeutics. US9775842B2, 2015.

  65. Chen Q, Yu H, Chen Y. Nanomaterials Compositions, Synthesis, and Assembly. US20170362238A1, 2017.

  66. Dobrovolskaia MA. Self-assembled DNA/RNA nanoparticles as a new generation of therapeutic nucleic acids: immunological compatibility and other translational considerations. DNA RNA Nanotechnol. 2016;3(1):1–10.

    Article  Google Scholar 

  67. Nixon AJ, Goodrich LR, Scimeca MS, Witte TH, Schnabel LV, Watts AE, et al. Gene therapy in musculoskeletal repair. Ann N Y Acad Sci. 2007;1117:310–27.

    Article  CAS  Google Scholar 

  68. Andersson G. The burden of musculoskeletal diseases in the United States: prevalence. In: Societal and Economic Cost. Rosemont: American Academy of Orthopaedic Surgeons; 2008.

    Google Scholar 

  69. Evans CH, Huard J. Gene therapy approaches to regenerating the musculoskeletal system. Nat Rev Rheumatol. 2015;11(4):234–42.

    Article  CAS  Google Scholar 

Download references

Funding

This work is funded by 7R01AR072024 and 7R03AR069383 from DHHS/NIH/NIAMS and the CAREER award (1905785) from NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yupeng Chen.

Ethics declarations

Conflict of Interest

Dr. Yupeng Chen is co-founder of NanoDe Therapeutics.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Rubin, L.E., Liu, C. et al. Short Interfering RNA (siRNA)-Based Therapeutics for Cartilage Diseases. Regen. Eng. Transl. Med. 7, 283–290 (2021). https://doi.org/10.1007/s40883-020-00149-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-020-00149-z

Keywords

Navigation