1 A proof by Mittag-Leffler expansion

Whereas Euler’s well-known formula provides a calculation of zeta values of even integers, \(\zeta (2m)\), no closed-form solutions are known for zeta values of odd integers, \(\zeta (2m-1)\). Lerch [6] and Ramanujan [1, 11] presented impressive formulas, which give rapidly converging series for \(\zeta (2m-1)\), for a comprehensive overview see also Berndt and Straub [2]. Here, Lerch’s formula is the special case \(a=b=\pi \) of Ramanujan’s more general expression: For \(ab=\pi ^2\),

$$\begin{aligned} {} -2^{2m+1} \sum _{j=0}^{m+1} \,(-1)^j&a^{m+1-j} b^j\hspace{0.55542pt}\frac{B_{2j} B_{2m+2-2j}}{(2j)!\,(2m+2-2j)!} \\&= a^{-m} \sum _{n=1}^\infty \, \frac{\coth \hspace{0.55542pt}(an)}{n^{2m+1}} -(-b)^{-m} \sum _{n=1}^\infty \, \frac{\coth \hspace{0.55542pt}(bn)}{n^{2m+1}} \\&= a^{-m} \biggl [\zeta (2m+1) + \sum _{n=1}^\infty \,\frac{2}{n^{2m+1}(e^{2na}-1)}\biggr ]\\&\qquad \quad - (-b)^{-m} \biggl [\zeta (2m+1) + \sum _{n=1}^\infty \,\frac{2}{n^{2m+1}(e^{2nb}-1)}\biggr ] . \end{aligned}$$

Proofs of this formula are the subject of many publications, mostly using the partial fraction decomposition of \(\coth \) function, e.g. [3, 8], or residue calculus, e.g. [7, 13].

In this work, a novel approach via Mittag-Leffler expansion of the generating function is presented. Without loss of generality, we choose \(a=\pi /\alpha \) and \(b=\pi \alpha \), which simplifies the treatment hereinafter. Furthermore, by replacing \(m\rightarrow m-1\) and multiplying the equation by \((2\pi )^{-m}\), Ramanujan’s formula can be expressed as follows:

Theorem 1.1

For \(m\geqslant 2\),

$$\begin{aligned} \begin{aligned} F_m(\alpha )&= -\sum _{j=0}^m \,(-1)^j \alpha ^{2j-m} \widetilde{B}_{2j}\widetilde{B}_{2m-2j} \\&= \alpha ^{m-1} \sum _{n=1}^\infty \, \frac{\coth \hspace{0.55542pt}(\pi n\alpha ^{-1})}{(2\pi n)^{2m-1}} - (-\alpha )^{1-m} \sum _{n=1}^\infty \, \frac{\coth \hspace{0.55542pt}(\pi n\alpha )}{(2\pi n)^{2m-1}} \hspace{0.55542pt}, \end{aligned} \end{aligned}$$
(1)

where, to simplify the notation, \(\widetilde{B}_{2k}\) are defined by even Bernoulli numbers \(B_{2k}\) as \(\widetilde{B}_{2k}=B_{2k}/(2k)!\) and can be calculated recursively,

$$\begin{aligned} \widetilde{B}_0=1, \quad \widetilde{B}_2=\frac{1}{12}\hspace{0.55542pt}, \quad (2k+1)\hspace{0.55542pt}\widetilde{B}_{2k} = -\sum _{j=1}^{k-1} \widetilde{B}_{2j}\widetilde{B}_{2k-2j}, \;\; k\geqslant 2. \end{aligned}$$
(2)

Proof

Ramanujan [2], Sitaramachandrarao [12], and Xu [14] analyzed the partial fraction decomposition of the function \(\cot \hspace{0.55542pt}\bigl (\frac{\sqrt{\alpha }x}{2}\bigr )\coth \hspace{0.55542pt}\bigl (\frac{x}{2\sqrt{\alpha }}\bigr )\). As discussed by Berndt and Straub [2], here a Mittag-Leffler expansion would fail, which is due to the occurrence of divergent sums. To avoid this, we include a factor 1/x and carry out the Mittag-Leffler expansion on the function

$$\begin{aligned} \tilde{f}_\alpha (x) = \frac{1}{x}\cot \hspace{0.55542pt}\biggl (\frac{\sqrt{\alpha }x}{2}\biggr )\coth \hspace{0.55542pt}\biggl (\frac{x}{2\sqrt{\alpha }}\biggr ). \end{aligned}$$

The function \(\tilde{f}_\alpha (x)\) has a pole of order 3 in \(x_0=0\) and poles of order 1 at the real axis in and at the imaginary axis in \(x_\textrm{In}=2\pi ni\sqrt{\alpha }\), both for \(n\ne 0\). Its principal parts \(p_j(x)\), consisting of the negative powers of the corresponding Laurent series \(\tilde{f}_{j\alpha }(x)= \sum _{k=-\infty }^{+\infty } c_{jk} (x-x_j)^{k}\), are calculated as \(p_j(x)=\lim _{x\rightarrow x_j}\tilde{f}_\alpha (x)\), since \(c_{j0}=0\) holds for all poles \(x_j\) of \(\tilde{f}_\alpha (x)\):

Applying Mittag-Leffler’s theorem, see e.g. [5, pp. 383–386], \(\tilde{f}_\alpha (x)\) can be approximated by the sum of its principal parts,

$$\begin{aligned} \tilde{f}_\alpha (x)&= p_0(x) + \sum _{n\ne 0} p_{\,\mathrm Rn}(x) + \sum _{n\ne 0} p_{\, \mathrm In}(x) \\&= \frac{4}{x^3} - \frac{\alpha -\alpha ^{-1}}{3x} + \sum _{n=1}^\infty \frac{2x \coth \hspace{0.55542pt}(\pi n\alpha ^{-1})}{\pi n (x^2 - \alpha ^{-1}(2\pi n)^2)} - \sum _{n=1}^\infty \frac{2x \coth \hspace{0.55542pt}(\pi n\alpha )}{\pi n (x^2 + \alpha (2\pi n)^2)}\hspace{0.55542pt}, \end{aligned}$$

where the principal parts (\(\propto n^{-2}\)) yield a normal convergence of \(\tilde{f}_\alpha (x)\) on \({\textbf{C}}\backslash \{x_j\}\).

For further analysis, we use \(f_\alpha (x) = \frac{1}{4}x^3[\tilde{f}_\alpha (x)-p_0(x)]\), which yields

$$\begin{aligned} \begin{aligned} f_\alpha (x)&= \frac{x^2}{4}\, \biggl [ \cot \hspace{0.55542pt}\biggl (\frac{\sqrt{\alpha }x}{2}\biggr ) \coth \hspace{0.55542pt}\biggl (\frac{x}{2\sqrt{\alpha }}\biggr ) + \frac{\alpha -\alpha ^{-1}}{3} \biggr ] - 1 \\&= \sum _{n=1}^\infty \, \frac{x^4}{2\pi n} \,\biggl [ \frac{\coth \hspace{0.55542pt}(\pi n\alpha ^{-1})}{x^2-\alpha ^{-1}(2\pi n)^2} - \frac{\coth \hspace{0.55542pt}(\pi n\alpha )}{x^2+\alpha (2\pi n)^2} \biggr ] . \end{aligned} \end{aligned}$$
(3)

With Taylor series

$$\begin{aligned} \begin{aligned} \frac{x}{2\sqrt{\alpha }} \coth \hspace{0.55542pt}\biggl (\frac{x}{2\sqrt{\alpha }}\biggr )&= \sum _{m=0}^\infty \,\alpha ^{-m} \widetilde{B}_{2m} x^{2m} , \\ \frac{\sqrt{\alpha }x}{2} \cot \hspace{0.55542pt}\biggl (\frac{\sqrt{\alpha }x}{2}\biggr )&= \sum _{m=0}^\infty \,(-\alpha )^m \widetilde{B}_{2m} x^{2m} , \\ \frac{(2\pi n)^{-1}x^4}{x^2-\alpha ^{-1}(2\pi n)^2}&= -\sum _{m=2}^\infty \, \frac{\alpha ^{m-1} x^{2m}}{(2\pi n)^{2m-1}}\hspace{0.55542pt},\\ \frac{(2\pi n)^{-1}x^4}{x^2+\alpha (2\pi n)^2}&= -\sum _{m=2}^\infty \,\frac{(-\alpha )^{1-m} x^{2m}}{(2\pi n)^{2m-1}} \hspace{0.55542pt}, \end{aligned} \end{aligned}$$

where \(|x| < 2\pi \min \hspace{0.55542pt}(|\alpha ^{1/2}|,|\alpha ^{-1/2}|)\), and with \(\widetilde{B}_0=1\) and \(\widetilde{B}_2=1/12\), equation (2), we get the series expansion for \(f_\alpha (x)\) as the generating function of \(F_m(\alpha )\) for \(m\geqslant 2\):

$$\begin{aligned} \begin{aligned} f_\alpha (x)&= - \sum _{m=2}^\infty F_m(\alpha )\hspace{1.111pt}x^{2m} \\&= \sum _{m=2}^\infty x^{2m} \sum _{j=0}^m \,(-1)^j \alpha ^{2j-m} \widetilde{B}_{2j}\widetilde{B}_{2m-2j} \\&= - \sum _{m=2}^\infty x^{2m}\hspace{1.111pt}\biggl [ \alpha ^{m-1} \sum _{n=1}^\infty \frac{\coth \hspace{0.55542pt}(\pi n\alpha ^{-1})}{(2\pi n)^{2m-1}} - (-\alpha )^{1-m} \sum _{n=1}^\infty \frac{\coth \hspace{0.55542pt}(\pi n\alpha )}{(2\pi n)^{2m-1}} \biggr ] , \end{aligned} \end{aligned}$$
(4)

which gives (1) by terms of \(x^{2m}\). \(\square \)

The functions \(F_m(\alpha )\) of (1), being calculated by the modified Bernoulli numbers \(\widetilde{B}_{2j}\) (where \(0\leqslant j \leqslant m\)), consist of a linear combination of the two sums \(C_m(\alpha ^{-1})\) and \(C_m(\alpha )\). Using the identity, \(\coth \hspace{0.55542pt}(x)=1 + 2/(\exp \hspace{0.55542pt}(2x)-1)\), the sums \(C_m\) can be decomposed into the odd zeta value \(\zeta (2\,m-1)=\sum _{n=1}^\infty n^{1-2m}\) and an infinite sum \(E_m\). For \(m\geqslant 2\) we get

$$\begin{aligned} \begin{aligned} F_m(\alpha )&= -\sum _{j=0}^m\, (- 1)^j \alpha ^{2j-m} \widetilde{B}_{2j}\widetilde{B}_{2m-2j}\\&= \alpha ^{m-1} C_m(\alpha ^{-1}) - (- \alpha )^{1-m} C_m(\alpha ), \\ C_m(\alpha )&= \sum _{n=1}^\infty \,\frac{\coth \hspace{0.55542pt}(\pi n\alpha )}{(2\pi n)^{2m-1}}= \frac{1}{(2\pi )^{2m-1}}\, \bigl [\zeta (2m-1)+E_m(\alpha )\bigr ], \\ E_m(\alpha )&= \sum _{n=1}^\infty \,\frac{2}{n^{2m-1}\, (e^{2\pi n\alpha }-1)} \hspace{0.55542pt}. \end{aligned} \end{aligned}$$
(5)

Thus, the values \(\zeta (2m-1)\) can be calculated by the function values \(F_m(\alpha )\) and the sums \(E_m(\alpha ^{-1})\) and \(E_m(\alpha )\), which converge rapidly for any \(\textrm{Re}\,\alpha >0\):

$$\begin{aligned} \begin{aligned} \bigl [ \alpha ^{m-1}&- (-\alpha )^{1-m} \bigr ]\hspace{1.111pt}\zeta (2m-1) \\&= {}-(2\pi )^{2m-1} F_m(\alpha ) - \alpha ^{m-1}E_m(\alpha ^{-1}) + (-\alpha )^{1-m} E_m(\alpha ) . \end{aligned} \end{aligned}$$
(6)

This is a reformulation of the equations of Ramanujan [2] and in the case of \(\alpha =1\) of Lerch [6].

Looking at (1), the symmetry of the functions \(F_m\) is given by

$$\begin{aligned} F_m(\alpha ) = (- 1)^m F_m(- \alpha ) = (- 1)^m F_m(\alpha ^{-1}) = F_m(- \alpha ^{-1}). \end{aligned}$$

Then, \(f_\alpha (x)=-\sum _{m=2}^\infty F_m(\alpha )\hspace{0.55542pt}x^{2m}\) applies to \( f_\alpha (\pm x) = f_{-\alpha }(\pm ix) = f_{-1/\alpha }(\pm x)= f_{1/\alpha }(\pm ix) \). With (1), \(F_m(\alpha )\) has a pole of order m in \(\alpha =0\), whereas the singularities of the right-hand expression in \(\alpha =ki\) and \(\alpha ^{-1}=ki\), \(k\in {\textbf{Z}}\backslash \{0\}\), generated by the terms \(\coth \hspace{0.55542pt}(\pi n\alpha )\) and \(\coth \hspace{0.55542pt}(\pi n\alpha ^{-1})\), are removable.

2 Fast converging series for \(\zeta (2m-1)\)

In particular, the case \(\alpha =1\) is the subject of various publications, see e.g. Plouffe [9, 10], Ghusayni [4], and Vepstas [13]. Furthermore, fast converging series of \(\zeta (2m-1)\) for \(\alpha =2\) and \(\alpha =1+i\) are used by Vepstas [13] and Plouffe [9, 10]. Based on that work, using (5) and (6) we derive a generalized set of formulas for fast converging series of \(\zeta (2m-1)\) and present the values of the associated coefficients.

(a) For \(\alpha =1\) it is \(C_m(\alpha ^{-1})=C_m(\alpha )=C(1)\), see (5). Here we have \(F_{2k+1}(1)=0\) for odd \(m=2k+1\) and \(F_{2k}(1)=2C_{2k}(1)\) for even \(m=2k\):

$$\begin{aligned} \begin{aligned} F_{2k+1}(1)&= -\sum _{j=0}^{2k+1}\, (-1)^j \widetilde{B}_{2j}\widetilde{B}_{4k+2-2j} = 0 , \\ F_{2k}(1)&= -\sum _{j=0}^{2k} \,(-1)^j \widetilde{B}_{2j}\widetilde{B}_{4k-2j} = 2 C_{2k}(1)= 2 \,\frac{\zeta (4k-1)+ E_{2k}(1)}{(2\pi )^{4k-1}} \hspace{0.55542pt}, \\ E_{2k}(1)&= \sum _{n=1}^\infty \, \frac{2}{n^{4k-1}\hspace{0.55542pt}(e^{2\pi n}-1)}\hspace{0.55542pt}. \end{aligned} \end{aligned}$$
(7)

Thus, with \(F^A_{2k}=2^{4k-1}F_{2k}(1)\) we obtain for \(\zeta (4k-1)\),

$$\begin{aligned} \begin{aligned} 2\hspace{0.55542pt}\zeta (4k-1)&= \pi ^{4k-1} F^A_{2k} - 2 E_{2k}(1) , \\ F^A_{2k}&={}-2^{4k-1} \sum _{j=0}^{2k}\, (- 1)^j \widetilde{B}_{2j}\widetilde{B}_{4k-2j} , \end{aligned} \end{aligned}$$
(8)

where \(E_{2k}(1)\) converges very rapidly with n, namely \(\propto e^{-2\pi n}\). The values of \(F^A_m(1)\) are shown in Table 1.

(b) For \(\alpha =2\) we get with (5):

$$\begin{aligned} F_m(2)&= -\sum _{j=0}^m \,(-1)^j 2^{2j-m} \widetilde{B}_{2j}\widetilde{B}_{2m-2j} = 2^{m-1} C_m\biggl (\frac{1}{2}\biggr ) - (-2)^{1-m} C_m(2) \\&= 2^{m-1}\hspace{1.111pt}\frac{\zeta (2m-1)+ E_m(1/2)}{(2\pi )^{2m-1}} - (- 2)^{1-m} \hspace{1.111pt}\frac{\zeta (2m-1)+ E_m(2)}{(2\pi )^{2m-1}}\hspace{0.55542pt}, \\ E_m\biggl (\frac{1}{2}\biggr )&= \sum _{n=1}^\infty \, \frac{2}{n^{2m-1}\, (e^{\pi n}-1)} , \quad E_m(2) = \sum _{n=1}^\infty \,\frac{2}{n^{2m-1}\hspace{0.55542pt}(e^{4\pi n}-1)}\hspace{0.55542pt}. \end{aligned}$$

Multiplying with \(2^m\), and writing \(F^B_m = 2^{3m-1} F_m(2)\), \(\zeta (2m-1)\) is calculated by

$$\begin{aligned} \begin{aligned}&\bigl (u^B_m + w^B_m\bigr )\hspace{0.55542pt}\zeta (2m-1) = \pi ^{2m-1} F^B_m - u^B_m E_m\biggl (\frac{1}{2}\biggr ) - w^B_m E_m(2) ,\\&u^B_m = 2^{2m-1} , \quad w^B_m = 2(- 1)^m , \quad F^B_m = {}-2^{2m-1} \sum _{j=0}^m\, (- 4)^j \widetilde{B}_{2j}\widetilde{B}_{2m-2j} , \end{aligned} \end{aligned}$$
(9)

where the values of \(u^B_m,w^B_m\), and \(F^B_m\) are shown in Table 1.

(c) The periodicity of the \(\coth \) function is given by \(\coth \hspace{0.55542pt}(z+ki\pi )=\coth \hspace{0.55542pt}(z)\). Hence we conclude

$$\begin{aligned} C_m(\alpha +ki) = \sum _{n=1}^\infty \,\frac{\coth \hspace{0.55542pt}(\pi n (\alpha +ki))}{(2\pi n)^{2m-1}} = \sum _{n=1}^\infty \,\frac{\coth \hspace{0.55542pt}(\pi n \alpha )}{(2\pi n)^{2m-1}} = C_m(\alpha ) . \end{aligned}$$
(10)

Furthermore, with \(\coth \hspace{0.55542pt}(z+i\pi /2)=\tanh \hspace{0.55542pt}(z)=2\coth \hspace{0.55542pt}(2z)-\coth \hspace{0.55542pt}(z)\) we obtain

$$\begin{aligned} \begin{aligned} C_m&\biggl (\alpha +\frac{i}{2}\biggr ) = \sum _{n=1}^\infty \frac{\coth \hspace{0.55542pt}(\pi n(\alpha +i/2))}{{(2\pi n)^{2m-1}}}\\&= \sum _{n=1}^\infty \frac{\coth \hspace{0.55542pt}(\pi n\alpha +i\pi /2)}{(2\pi n)^{2m-1}} + \sum _{n=1}^\infty \frac{\coth \hspace{0.55542pt}(2\pi n\alpha )-\coth \hspace{0.55542pt}(2\pi n\alpha +i\pi /2)}{(4\pi n)^{2m-1}} \\&= \sum _{n=1}^\infty \frac{ -\coth \hspace{0.55542pt}(\pi n\alpha ) + (2+2^{2-2m})\coth \hspace{0.55542pt}(2\pi n\alpha ) - 2^{2-2m}\coth \hspace{0.55542pt}(4\pi n\alpha )}{{(2\pi n)^{2m-1}}} \\&= {}- C_m(\alpha ) + (2+4^{1-m})\hspace{0.55542pt}C_m(2\alpha ) - 4^{1-m} C_m(4\alpha ) . \end{aligned} \end{aligned}$$
(11)

Now, for \(\alpha =1+i\) we have \(\alpha ^{-1}=(1-i)/2\). With (10) and (11) we get

$$\begin{aligned} C_m(1+i)&= C_m(1) , \\ C_m\biggl (\frac{1-i}{2}\biggr )&= {}- C_m\biggl (\frac{1}{2}\biggr ) + (2+4^{1-m})\hspace{0.55542pt}C_m(1) - 4^{1-m} C_m(2) , \end{aligned}$$

where \(C_m(1+i)\) and \(C_m((1-i)/2)\) are real numbers. Then, (5) gives

$$\begin{aligned} F_m&(1+i) =-\sum _{j=0}^m \,(-1)^j (1+i)^{2j-m} \widetilde{B}_{2j}\widetilde{B}_{2m-2j} \\&= (1+i)^{m-1} C_m\biggl (\frac{1-i}{2}\biggr ) - [- (1+i)]^{1-m}\hspace{0.55542pt}C_m(1+i) \\&= (1+i)^{m-1} \biggl [{-}\hspace{1.66656pt}C_m\biggl (\frac{1}{2}\biggr ) + \bigl (2+4^{1-m}-(- 2i)^{1-m}\bigr )\hspace{1.111pt}C_m(1) - 4^{1-m} C_m(2) \biggr ] . \end{aligned}$$

Defining \(F^H_m=2^m (1-i)^{m-1} F_m(1+i)\), we have

$$\begin{aligned} F^H_m&= {}-\frac{1}{2}\, (1+i)(- 2i)^m \sum _{j=0}^m\, (- 2i)^j \widetilde{B}_{2j}\widetilde{B}_{2m-2j} \\&= {}-2^{2m-1} C_m\biggl (\frac{1}{2}\biggr ) + \bigl (2^{2m}+2-2(2i)^{m-1}\bigr )\hspace{1.111pt}C_m(1) - 2 C_m(2) . \end{aligned}$$

Now, looking at the real part, with \(F^C_m= 2^{2\,m-1} \textrm{Re}\, F^H_m\) we obtain

$$\begin{aligned} \bigl (u^C_m&+ v^C_m + w^C_m\bigr ) \hspace{1.111pt}\zeta (2m-1) \\&= \pi ^{2m-1} F^C_m- u^C_m E_{m}\biggl (\frac{1}{2}\biggr ) - v^C_m E_{m}(1) - w^C_m E_{m}(2) , \nonumber \\ u^C_m&= {}-2^{2m-1} , \quad v^C_m = 2^{2m} + 2 - \textrm{Im}\hspace{0.55542pt}[(2i)^m], \quad w^C_m = {}-2 ,\nonumber \\ F^C_{2k}&= {}-\frac{1}{4}\, (-64)^{k} \biggl [ \sum _{j=0}^k \,(-4)^j \widetilde{B}_{4j}\widetilde{B}_{4k-4j} +2 \sum _{j=0}^{k-1}\, (-4)^j \widetilde{B}_{4j+2}\widetilde{B}_{4k-4j-2} \biggr ] ,\nonumber \\ F^C_{2k+1}&= {}-2 (-64)^{k} \biggl [ \sum _{j=0}^k (-4)^j \widetilde{B}_{4j}\widetilde{B}_{4k+2-4j} -2 \sum _{j=0}^{k} (-4)^j \widetilde{B}_{4j+2}\widetilde{B}_{4k-4j} \biggr ] .\nonumber \end{aligned}$$
(12)

The values of the coefficients \(u^C_m,v^C_m,w^C_m\), and \(F^C_m\) are presented in Table 1. Calculating the imaginary part, \(\textrm{Im}\, F^H_m\), and comparing with (7), we find nontrivial relations of modified Bernoulli numbers:

$$\begin{aligned} {}-2\hspace{0.55542pt}(-4)^{-k} \hspace{0.55542pt}\textrm{Im}\, F^H_{2k}&= \sum _{j=0}^k\, (-4)^j \widetilde{B}_{4j}\widetilde{B}_{4k-4j} - 2\sum _{j=0}^{k-1} \,(-4)^j \widetilde{B}_{4j+2}\widetilde{B}_{4k-4j-2}\\&= 2 C_{2k}(1) = F_{2k}(1) = -\sum _{j=0}^{2k} \,(-1)^j \widetilde{B}_{2j}\widetilde{B}_{4k-2j} , \\ (-4)^{-k}\hspace{0.55542pt}\textrm{Im}\, F^H_{2k+1}&= \sum _{j=0}^k\, (-4)^j \widetilde{B}_{4j}\widetilde{B}_{4k+2-4j} + 2\sum _{j=0}^{k}\, (-4)^j \widetilde{B}_{4j+2}\widetilde{B}_{4k-4j} = 0 , \end{aligned}$$

see also Vepstas [13].

(d) In (12) the sums \(E_m(1/2) \,{\propto }\, \exp \hspace{0.55542pt}(-n\pi )\) do not converge as fast as the sums \(E_m(1) \,{\propto }\, \exp \hspace{0.55542pt}(-2n\pi )\) and \(E_m(2) \,{\propto }\, \exp \hspace{0.55542pt}(-4n\pi )\). The sums \(E_m(1/2)\), which occur in \(F^B_m\), (9), and \(F^C_m\), (12), can be avoided by taking the linear combination

$$\begin{aligned} F^D_m = F^B_m + F^C_m. \end{aligned}$$

Since \(u^B_m+u^C_m=2^{2m-1}-2^{2m-1}=0\), we get

$$\begin{aligned} \begin{aligned}&\bigl (v^D_m + w^D_m\bigr )\hspace{1.111pt}\zeta (2m-1) = \pi ^{2m-1} F^D_m - v^D_m E_{m}(1) - w^D_m E_{m}(2) , \\&v^D_{2k} = 16^k + 2 , \quad w^D_{2k} = 0 , \quad F^D_{2k} = F^B_{2k} + F^C_{2k} , \\&v^D_{2k+1} = 4^{2k+1} + 2 - 2(-4)^k , \quad w^D_{2k+1} = -4 , \quad F^D_{2k+1} = F^B_{2k+1} + F^C_{2k+1} . \end{aligned} \end{aligned}$$
(13)

For the values of \(v^D_m,w^D_m\), and \(F^D_m\), see Table 1. For even \(m=2k\) we get \(w^D_{2k}=0\). Thus, comparing (13) with (8), \(F^D_{2k} = F^B_{2k}+ F^C_{2k} = (2^{4k-1}+1) F^A_{2k}\) gives another relation of modified Bernoulli numbers \(\widetilde{B}_{2j}\):

$$\begin{aligned} (-4)^{k}&\,\biggl [ \sum _{j=0}^k \,(-4)^j \widetilde{B}_{4j}\widetilde{B}_{4k-4j} +2 \sum _{j=0}^{k-1} \,(-4)^j \widetilde{B}_{4j+2}\widetilde{B}_{4k-4j-2} \biggr ] \\&= (16^k+2) \sum _{j=0}^{2k} \,(-1)^j \widetilde{B}_{2j}\widetilde{B}_{4k-2j} - 2 \sum _{j=0}^{2k} \,(-4)^j \widetilde{B}_{2j}\widetilde{B}_{4k-2j} . \end{aligned}$$

Calculating \(\zeta (2m-1)\), the series of (8) for even m and of (13) for odd m converge with \(\propto \exp \hspace{0.55542pt}(-2n\pi )\) faster than the series of (9) and (12) with \(\propto \exp \hspace{0.55542pt}(-n\pi )\).

(e) If \(F^E_m\) is a linear combination of \(F^A_m,F^B_m\), and \(F^C_m\), see (8), (9), (12), such that \(u^E_m+v^E_m+w^E_m=0\), then the contribution of \(\zeta (2m-1)\) to \(F^E_m\) vanishes, and \((2\pi )^{2m-1} F^E_m\) can be calculated solely by the sums \(E_m(1/2),E_m(1)\), and \(E_m(2)\), compare also Vepstas [13]. Thereby, \(\pi ^{2m-1}\) can be expressed by fast converging series. For m up to 10, these sums are presented by Plouffe [9]. In general, they can be achieved by the following linear combinations:

$$\begin{aligned}\begin{aligned} F^E_{2k}&= F^B_{2k} - \bigl (1 +4^{2k-1}\bigr )\hspace{0.55542pt}F^A_{2k}{} & {} \text{ for } \text{ even } m=2k , \\ F^E_{2k+1}&= (-4)^k F^B_{2k+1} - \bigl [(-4)^k +1\bigr ]\hspace{0.55542pt}F^C_{2k+1}{} & {} \text{ for } \text{ odd } m=2k+1 , \end{aligned} \end{aligned}$$

where we get

(14)

The values of \(u^E_m,v^E_m\), \(w^E_m\), and \(F^E_m\) are listed in Table 1. Because the sums \(E_m(1/2)\), \(E_m(1)\), and \(E_m(2)\) themselves depend on \(e^{\pi }\), a calculation of \(\pi \) by (14) must be carried out numerically.

Table 1 The coefficients of (a) (8), (b) (9), (c) (12), (d) (13), and (e) (14), for \(2 \leqslant m \leqslant 8\)

3 The limit \(\alpha \rightarrow 0\)

The functions \(F_m(\alpha )\) of (1) do not only yield series for calculating \(\zeta (2m-1)\). Additionally, the limits \(\lim _{\,\alpha \rightarrow 0} \alpha ^m F_m(\alpha )\) in (1) derive Euler’s classical formula for \(\zeta (2m)\).

Theorem 3.1

$$\begin{aligned} \frac{(-1)^m \hspace{0.55542pt}(2\pi )^{2m}}{2} \lim _{\alpha \rightarrow 0} \alpha ^m F_m(\alpha ) = \zeta (2m) = \sum _{n=1}^\infty \frac{1}{n^{2m}} = \frac{(-1)^{m-1}\hspace{0.55542pt}(2\pi )^{2m}}{2\hspace{0.55542pt}(2m)!} \,B_{2m}. \end{aligned}$$

Notably, the analytical expressions of even zeta values and the fast-converging series of odd zeta values arise from the same set of functions \(F_m(\alpha )\).

Proof

(a) \(m\geqslant 2\): Using the identities

$$\begin{aligned} \lim _{\alpha \rightarrow 0} \pi n\alpha \coth \hspace{0.55542pt}(\pi n\alpha )=1, \quad \lim _{\alpha \rightarrow 0} \alpha ^{2m-1}\coth \hspace{0.55542pt}(\pi n\alpha ^{-1})=0, \end{aligned}$$

and \(\widetilde{B}_0=1\), see (2), the limit \(\lim _{\,\alpha \rightarrow 0} \alpha ^m F_m(\alpha )\) for both sides of (1) gives

$$\begin{aligned} \lim _{\alpha \rightarrow 0} \alpha ^m F_m(\alpha )&= \lim _{\alpha \rightarrow 0} \sum _{j=0}^m \,(-1)^{j+1} \alpha ^{2j} \widetilde{B}_{2j}\widetilde{B}_{2m-2j} = {}-\widetilde{B}_{2m} = {}-\frac{B_{2m}}{(2m)!} \\&= \lim _{\alpha \rightarrow 0}\, \biggl [\, \sum _{n=1}^\infty \, \frac{\alpha ^{2m-1}\coth \hspace{0.55542pt}(\pi n\alpha ^{-1})}{(2\pi n)^{2m-1}} +(-1)^m \sum _{n=1}^\infty \,\frac{\alpha \coth \hspace{0.55542pt}(\pi n\alpha )}{(2\pi n)^{2m-1}} \biggr ]\\&= \sum _{n=1}^\infty \, \frac{2(-1)^m}{(2\pi n)^{2m}}\hspace{0.55542pt}, \end{aligned}$$

(b) \(m=1\): Analogously to (1), for \(m=1\) the function \(F_1(\alpha )\) is calculated as

$$\begin{aligned} F_1(\alpha ) = C_1(\alpha ^{-1}) - C_1(\alpha ) = \sum _{n=1}^\infty \frac{\coth \hspace{0.55542pt}(\pi n\alpha ^{-1})-\coth \hspace{0.55542pt}(\pi n\alpha )}{2\pi n} = \frac{\alpha -\alpha ^{-1}}{12} - \frac{\ln \hspace{0.55542pt}(\alpha )}{2\pi }\hspace{0.55542pt}, \end{aligned}$$

see e.g. [2, 8]. With \(\lim _{\,\alpha \rightarrow 0} \alpha \ln \hspace{0.55542pt}(\alpha )=0\) and \(\widetilde{B}_2=1/12\), see (2), here the limit \(\lim _{\,\alpha \rightarrow 0} \alpha F_1(\alpha )\) results

$$\begin{aligned} \lim _{\alpha \rightarrow 0} \alpha F_1(\alpha )&\displaystyle = \lim _{\alpha \rightarrow 0}\hspace{1.111pt}\alpha \biggl [ \frac{\alpha -\alpha ^{-1}}{12} - \frac{\ln \hspace{0.55542pt}(\alpha )}{2\pi } \biggr ] = {}-\frac{1}{12} = {}-\widetilde{B}_{2} = {}-\frac{B_{2}}{2!}\nonumber \\&= \lim _{\alpha \rightarrow 0}\, \sum _{n=1}^\infty \,\alpha \, \frac{\coth \hspace{0.55542pt}(\pi n\alpha ^{-1})-\coth \hspace{0.55542pt}(\pi n\alpha )}{2\pi n} = \sum _{n=1}^\infty \, \frac{-2}{(2\pi n)^2}\hspace{0.55542pt}. \end{aligned}$$

\(\square \)

4 Triangle identity

Whereas \(F_m(\alpha )=\alpha ^{m-1}C_m(\alpha ^{-1})-(-\alpha ^{-1})^{1-m}C_m(\alpha )\) can be calculated directly by the coefficients \(\widetilde{B}_{2j}\), see (5), no closed-form solutions are known for the sums \(C_m(\alpha )\), apart from those \(\alpha _k\), where \(\alpha _k=\alpha _k^{-1}+ki\) and therefore \(C_m(\alpha _k)=C_m(\alpha _k^{-1})\) due to symmetry. Moreover, the function values \(F_m(\alpha ),F_m(\alpha +i)\), and \(F_m(\alpha ^{-1}-i)\) form a triangle identity.

Theorem 4.1

$$\begin{aligned} F_m(\alpha ) = (i\alpha ^{-1}+1)^{m-1} F_m(\alpha +i) - (i\alpha -1)^{m-1} F_m(\alpha ^{-1}-i). \end{aligned}$$

Proof

With the symmetry of (10), \(C_m(\alpha )= C_m(\alpha \pm i)\), we have

$$\begin{aligned} C_m(\alpha ) = C_m(\alpha +i), \;\; C_m\biggl (\frac{1}{\alpha }\biggr ) = C_m\biggl (\frac{1-i\alpha }{\alpha }\biggr ), \;\; C_m\biggl (\frac{1}{\alpha +i}\biggr ) = C_m\biggl (\frac{\alpha }{1-i\alpha }\biggr ). \end{aligned}$$

Then, with (5) we get

which proves the theorem. \(\square \)

Analogously, the generating function \(f_\alpha (x)=-\sum _{m=2}^\infty F_m(\alpha )x^{2m}\), (4), shows a similar symmetry, satisfying the relation

$$\begin{aligned} 0&= f_\alpha (x) - (i\alpha ^{-1}+1)^{-1} f_{\alpha +i}\bigl (\sqrt{i\alpha ^{-1}+1}\, x\bigr ) + (i\alpha -1)^{-1} f_{\alpha ^{-1}-i}\bigl (\sqrt{i\alpha -1}\, x\bigr ) \\&= -\sum _{m=2}^\infty x^{2m} \bigl [ F_m(\alpha ) - (i\alpha ^{-1}+1)^{m-1} F_m(\alpha +i) + (i\alpha -1)^{m-1} F_m(\alpha ^{-1}-i) \bigr ] . \end{aligned}$$