Skip to main content
Log in

The Effect of Nano-Fillers on the In-Plane and Interlaminar Shear Properties of Carbon Fiber Reinforced Composite

  • Published:
Journal of Dynamic Behavior of Materials Aims and scope Submit manuscript

Abstract

In this study, the interlaminar region of a carbon fiber composites was reinforced with silica nano-particles, and its effect on the in-plane mechanical response was investigated. Also, the effect of particles on the dynamic interlaminar shear strength of composites was studied. Two batches of composite specimens, one batch made of only fiber and matrix and the other with nano-silica added as a third phase, were fabricated. The composite specimens were prepared through a high-temperature molding process, where the nanoparticles were dispersed on the surface of the prepreg layers before stacking. For in-plane properties, standard tensile test coupons were made with fibers oriented at a different angle relative to the loading direction. For interlaminar shear properties, a V-notch bending and three-point bending specimens were prepared. It was found that the nanoparticles have a sound influence on the in-plane mechanical response mainly on the in-plane shear property of the composite. On the other hand, the nano-filler has shown a significant effect on the dynamic interlaminar shear strength of the laminate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Kim J, Shioya M, Kobayashi H, Kaneko J, Kido M (2004) Mechanical properties of woven laminates and felt composites using carbon fibers. Part 1: in-plane properties. Compos Sci Technol 64:2221–2229. https://doi.org/10.1016/j.compscitech.2004.03.012

    Article  Google Scholar 

  2. Kotaki M, Hamada H (1997) Effect of interfacial properties and weave structure on mode I interlaminar fracture behavior of glass satin woven fabric composites. Compos Part A 28:257–266. https://doi.org/10.1016/S1359-835X(96)00121-2

    Article  Google Scholar 

  3. Tessema A, Mitchell W, Koohbor B, Ravindran S, Kidane A, Van Tooren M (2016) On the mechanical response of polymer fiber composites reinforced with nanoparticles. In: Ralph C, Silberstein M, Piyush R Thakre, Raman Singh (eds) Mechanics of composite and multi-functional materials, vol 7. Springer, Cham, pp. 125–130

    Google Scholar 

  4. Tessema A, Myers N, Patel R, Ravindran S, Kidane A (2016) Experimental investigation on the correlation between damage and thermal conductivity of CFRP. In: Proceedings of the American Society for Composites 2016, thirty-first technical conference on composite

  5. Tessema A, Ravindran S, Kidane A (2017) Experimental study of residual plastic strain and damages development in carbon fiber composite. In: Zehnder AT, Carroll J, Hazeli K, Berke R, Pataky G, Cavalli M, Beese AM, Xia S (eds) Fracture, fatigue, failure and damage evolution, vol 8. Springer, Cham, pp. 31–36

    Chapter  Google Scholar 

  6. Soliman E, Al-Haik M, Taha MR (2012) On and off-axis tension behavior of fiber reinforced polymer composites incorporating multi-walled carbon nanotubes. J Compos Mater 46:1661–1675. https://doi.org/10.1177/0021998311422456

    Article  Google Scholar 

  7. Pollock P, Yu L, Sutton MA, Guo S, Majumdar P, Gresil M (2014) Full-field measurements for determining orthotropic elastic parameters of woven glass-epoxy composites using off-axis tensile specimens. Exp Tech 38:61–71. https://doi.org/10.1111/j.1747-1567.2012.00824.x

    Article  Google Scholar 

  8. Koohbor B, Mallon S, Kidane A, Sutton MA (2014) A DIC-based study of in-plane mechanical response and fracture of orthotropic carbon fiber reinforced composite. Compos Part B 66:388–399

    Article  Google Scholar 

  9. Koohbor B, Ravindran S, Kidane A (2016) Meso-scale study of non-linear tensile response and fiber trellising mechanisms in woven composites. J Reinf Plast Compos. https://doi.org/10.1177/0731684416633771

    Google Scholar 

  10. Koohbor B, Ravindran S, Kidane A (2015) Meso-scale strain localization and failure response of an orthotropic woven glass–fiber reinforced composite. Compos Part B 78:308–318

    Article  Google Scholar 

  11. Tessema A, Kidane A (2017) Cross-property interaction between stiffness, damage and thermal conductivity in particulate nanocomposite. Polym Test 64:127–135. https://doi.org/10.1016/j.polymertesting.2017.09.032

    Article  Google Scholar 

  12. Tessema A, Zhao D, Kidane A, Kumar SK (2016) Effect of micro-cracks on the thermal conductivity of particulate nanocomposite. In: Fracture, fatigue, failure and damage evolution, vol 8. Springer, Cham, pp. 89–94

    Chapter  Google Scholar 

  13. Tessema A, Ravindran S, Wohlford A, Kidane A (2018) In-situ observation of damage evolution in quasi-isotropic CFRP laminates. In: J Carroll et al (eds) Fracture, fatigue, failure and damage evolution, vol 7. Springer, Cham, pp. 67–72

    Chapter  Google Scholar 

  14. Tessema A, Ravindran S, Kidane A (2017) Gradual damage evolution and propagation in quasi-isotropic CFRC under quasi-static loading. Compos Struct. https://doi.org/10.1016/j.compstruct.2017.11.013

    Google Scholar 

  15. Zhou Y, Baseer MA, Mahfuz H, Jeelani S (2006) Monte Carlo simulation on tensile failure process of unidirectional carbon fiber reinforced nano-phased epoxy. Mater Sci Eng A 420:63–71

    Article  Google Scholar 

  16. Wang WX, Takao Y, Matsubara T, Kim HS (2002) Improvement of the interlaminar fracture toughness of composite laminates by whisker reinforced interlamination. Compos Sci Technol 62:767–774. https://doi.org/10.1016/S0266-3538(02)00052-0

    Article  Google Scholar 

  17. Timmerman JF, Hayes BS, Seferis JC (2002) Nanoclay reinforcement effects on the cryogenic microcracking of carbon fiber/epoxy composites. Compos Sci Technol 62:1249–1258. https://doi.org/10.1016/S0266-3538(02)00063-5

    Article  Google Scholar 

  18. Tessema A, Mitchell W, Koohbor B, Ravindra S, Kidane A, Van Tooren M (2015) Effects of nanoparticles on the shear properties of polymer composites. In: American Society of Composite Technical Conference

  19. Tehrani M, Boroujeni AY, Hartman TB, Haugh TP, Case SW, Al-Haik MS (2013) Mechanical characterization and impact damage assessment of a woven carbon fiber reinforced carbon nanotube-epoxy composite. Compos Sci Technol 75:42–48. https://doi.org/10.1016/j.compscitech.2012.12.005

    Article  Google Scholar 

  20. Sprenger S (2013) Improving mechanical properties of fiber-reinforced composites based on epoxy resins containing industrial surface-modified silica nanoparticles: review and outlook. J Compos Mater 49:53–63. https://doi.org/10.1177/0021998313514260

    Article  Google Scholar 

  21. Mahrholz T, Mosch J, Röstermundt D, Riedel U, Herbeck L (2003) New high-performance fibre reinforced materials with nanocomposites. In: AAAF colloquium–materials for aerospace applications, Paris. pp 1–7

  22. Cho J, Joshi MS, Sun CT (2006) Effect of inclusion size on mechanical properties of polymeric composites with micro and nanoparticles. Compos Sci Technol 66:1941–1952. https://doi.org/10.1016/j.compscitech.2005.12.028

    Article  Google Scholar 

  23. Tessema A, Zhao D, Moll J, Xu S, Yang R, Li C, Kumar SK, Kidane A (2017) Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites. Polym Test 57:101–106. https://doi.org/10.1016/j.polymertesting.2016.11.015

    Article  Google Scholar 

  24. Tessema A, Kidane A (2015) The effect of particles size on the thermal conductivity of polymer nanocomposite. In: G Tandon (ed) Composite, hybrid, and multifunctional materials, vol 4. Springer, Cham, pp. 151–156

    Google Scholar 

  25. Song YS (2007) Multiscale fiber-reinforced composites prepared by vacuum-assisted resin transfer molding. Polym Compos 28:458–461

    Article  Google Scholar 

  26. Miller SG, Micham L, Copa CC, Criss JM Jr, Mintz EA (2011) Nanoparticle filtration in a RTM processed epoxy/carbon fiber composite. SAMPE 2011, Long Beach

    Google Scholar 

  27. Lauke B (2008) On the effect of particle size on fracture toughness of polymer composites. Compos Sci Technol 68:3365–3372. https://doi.org/10.1016/j.compscitech.2008.09.011

    Article  Google Scholar 

  28. Nelson JM, Hackett SC, Hine AM, Sedgwick P, Lowe RH, Quinn DJ, Goetz DP, Schultz WJ (2011) Development of nanosilica-epoxy matrix resins for high temperature prepreg composites. Proc Soc Adv Mater Process Eng SAMPE 2011:23–26

    Google Scholar 

  29. Alif N, Carlsson La, Boogh L (1998) The effect of weave pattern and crack propagation direction on mode I delamination resistance of woven glass and carbon composites. Compos Part B 29:603–611. https://doi.org/10.1016/S1359-8368(98)00014-6

    Article  Google Scholar 

  30. Naik NK, Asmelash A, Kavala VR, Ch V (2007) Interlaminar shear properties of polymer matrix composites: strain rate effect. Mech Mater 39(12):1043–1052

    Article  Google Scholar 

  31. Kidane A, Gowtham HL, Naik NK (2017) Strain rate effects in polymer matrix composites under shear loading: a critical review. J Dynamic Behavior Mater 3(1):110–132

    Article  Google Scholar 

Download references

Acknowledgements

Royal Tencate Corporate is greatly acknowledged for providing the prepreg materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kidane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tessema, A., Mitchell, W., Koohbor, B. et al. The Effect of Nano-Fillers on the In-Plane and Interlaminar Shear Properties of Carbon Fiber Reinforced Composite. J. dynamic behavior mater. 4, 296–307 (2018). https://doi.org/10.1007/s40870-018-0166-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40870-018-0166-2

Keywords

Navigation