Skip to main content
Log in

Numerical investigations of micro bubble drag reduction effect for container ships

  • Original Paper
  • Published:
Marine Systems & Ocean Technology Aims and scope Submit manuscript

Abstract

In the course of the most recent decades reduction of ship resistance and saving fuel consumption to accomplish higher speed with reduction of pollutants has been the significant subject for researchers. Micro bubble drag reduction technique is one of the most interesting thoughts in this field owing to its great advantages, such as considerable potential drag reduction, easy operations, environmental friendliness and low costs. In this study a 3-D numerical investigation into frictional drag reduction by air micro bubbles is applied on KRISO container ship model. The objective is to understand the mechanism of resistance reduction through micro bubbles injection under model ship at different Froude numbers, injection rate and of course volume fractions. The numerical simulations are performed using a commercial CFD code solving Reynolds averaged Navier–Stokes (RANS) equations. A large number of simulations has been performed to investigate the effect of injection of micro bubble under ship model hull to estimate the local coefficient of friction values along ship hull model. The results show that at all of the examined Froude’s numbers, frictional resistance reduction attained at different rates and a maximum drag reduction of 27.6% was obtained at 0.282 Froude number with 4.8% air volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S. Sherbaz, W. Duan, Ship trim optimization: assessment of influence of trim on resistance of MOERI container ship. Sci. World J. 2014, 1–6 (2014). https://doi.org/10.1155/2014/603695

    Article  Google Scholar 

  2. M.H. Montazeri, M.M. Alishahi, An efficient method for numerical modeling of thin air layer drag reduction on flat plate and prediction of flow instabilities. J. Ocean Eng. 179, 22–37 (2019). https://doi.org/10.1016/j.oceaneng.2019.03.016

    Article  Google Scholar 

  3. Info Sheet No. 30—Modern Ship Size Definitions. 2010. Available online: https://books.google.gr/books?id=3XZr_gMA1F0C&pg=PA110&dq=Info+Sheet+No.30%E2%80%94Modern+Ship+Size+Definitions;+Lloyd%27s+Register:+2010&hl=el&sa=X&ved=0ahUKEwiG2MTPvobpAhXEeZoKHejEBVIQ6AEIMTAB. Accessed 20 June 2020

  4. E.J. Foeth, Decreasing frictional resistance by air lubrication. In Proceedings of the 20th International Hiswa Symposium on Yacht Design and Yacht Construction, Decreasing Frictional Resistance by Air Lubrication, Amsterdam, The Netherlands, 17–18 November 2008.

  5. MAN diesel & Turbo ‘Basic principles of ship propulsion’. Available from: http://www.mandieselturbo.com/files/news/filesof5405/5510_004_02%20low.pdf. Accessed 8 June 2021

  6. B.R. Elbing, S. Makiharju, A. Wiggins, M. Perlin, D.R. Dowling, S.L. Ceccio, On the scaling of air layer drag reduction. J. Fluid Mech. 717, 484–513 (2013)

    Article  Google Scholar 

  7. M. Ahmad, M. Mousavi, A review on the drag reduction methods of the ship hulls for improving the hydrodynamic performance. Int. J. Marit. Technol. 4, 51–64 (2015)

    Google Scholar 

  8. S.L. Ceccio, S.A. Mäkiharju, Air lubrication drag reduction on Great Lakes ships, Great Lakes Maritime Research Institute (2012)

  9. S. Mäkiharju, M. Perlin, S. Ceccio, On the energy economics of air lubrication drag reduction. Int. J. Nav. Archit. Ocean Eng. 4, 412–422 (2012). https://doi.org/10.3744/JNAOE.2012.4.4.412

    Article  Google Scholar 

  10. N.K. Madavan, S. Deutsch, C.L. Merkle, Measurements of local skin friction in a microbubble-modified turbulent boundary layer. J. Fluid Mech. 156(1), 237–256 (1985). https://doi.org/10.1017/s0022112085002075

    Article  Google Scholar 

  11. B.R. Elbing, E.S. Winkel, K.A. Lay, S.L. Ceccio, D.R. Dowling, M. Perlin, Bubble induced skin friction drag reduction and the abrupt transition to air layer drag reduction. J. Fluid Mech. 612, 201–236 (2008). https://doi.org/10.1017/s0022112008003029

    Article  MATH  Google Scholar 

  12. V.G. Bogdevich, A.R. Evseev, A.G. Malyuga, G.S. Migirenko, Gas saturation effect on near wall turbulence characteristics. Second International Conference on drag reduction, 25–37, 1977

  13. M.E. McCormick, R. Bhattacharyya, Drag reduction of a submersible hull by electrolysis. Nav. Eng. J. 85(2), 11–16 (1973). https://doi.org/10.1111/j.1559-3584.1973.tb04788.x

    Article  Google Scholar 

  14. W.C. Sanders, E.S. Winkel, D.R. Dowling, M. Perlin, S.L. Ceccio, Bubble friction drag reduction in a high Reynolds-number flat plate turbulent boundary layer. J. Fluid Mech. 552(1), 353–380 (2006)

    Article  Google Scholar 

  15. N.K. Madavan, S. Deutsch, C.L. Merkle, Reduction of turbulent skin friction by microbubbles. Phys. Fluids 27(2), 356 (1984). https://doi.org/10.1063/1.864620

    Article  Google Scholar 

  16. J.F. Tsai, C.C. Chen, Boundary layer mixture model for a microbubble drag reduction technique. Int. Sch. Res. Not. (2011). https://doi.org/10.5402/2011/405701

    Article  Google Scholar 

  17. F. Yang, L. Wang, J. Wang, S. Chen, L. Luo, M. Wang, Numerical simulation on drag reduction of river-sea bulk cargo by gas film. Paper presented at the the Proceedings of the twenty-seventh international ocean and polar engineering conference, San Francisco, California, 2017

  18. S. Zhang, S. Yang, J. Liu, Numerical investigation of a novel device for bubble generation to reduce ship drag. Int. J. Nav. Archit. Ocean Eng. 10(5), 629–643 (2017)

    Article  Google Scholar 

  19. W.K. Yanuar, S.Y. Pratama, B.D. Candra, B.A. Rahmat, Comparison of microbubble and air layer injection with porous media for drag reduction on a self- propelled barge ship model. J. Mar. Sci. Appl. 17(2), 165–172 (2018). https://doi.org/10.1007/s11804-018-0028-2

    Article  Google Scholar 

  20. M. Kawabuchi, C. Kawakita, S. Mizokami, S. Higasa, Y. Kodan, S. Takano, CFD predictions of bubbly flow around an energy-saving ship with Mitsubishi air lubrication system. Mitsubishi Heavy Ind. Tech. Rev. 48(1), 53–57 (2011)

    Google Scholar 

  21. M.M. Guin, H. Kato, H. Yamaguchi, M. Maeda, M. Miyanaga, Reduction of skin friction by microbubbles and its relation with near-wall bubble concentration in a channel. J. Mar. Sci. Technol. 1(5), 241–254 (1996). https://doi.org/10.1007/bf02390723

    Article  Google Scholar 

  22. S. Sindagi, R. Vijayakumar, S. Nirali, B. K. Saxena, Numerical investigation of influence of microbubble injection, distribution, void fraction and flow speed on frictional drag reduction. Proceedings of the Fourth International Conference in Ocean Engineering (ICOE2018), Lecture notes in civil engineering 22, 293–318, 2019

  23. ABS Energy Efficiency Advisory, Air Lubrication Technology, 2019. https://maritimecyprus.files.wordpress.com/2019/04/abs-air-lubrication-technology.pdf. Accessed 20 May 2020

  24. S.L. Ceccio, Friction drag reduction of external flows with bubble and gas injection. Ann. Rev. Fluid Mech. 42, 183–203 (2010)

    Article  Google Scholar 

  25. Y. Murai, Frictional drag reduction by bubble injection. Exp Fluids 55, 1773 (2014)

    Article  Google Scholar 

  26. A. Hashim, O.B. Yaakob, K.K. Koh, N. Ismail, Y.M. Ahmed, Review of micro-bubble ship resistance reduction methods and the mechanisms that affect the skin friction on drag reduction from 1999 to 2015. Jurnal Teknologi 74(5), 105–114 (2015)

    Article  Google Scholar 

  27. S. Mizokami, M. Kawakado, M. Kawano, I. Hirakawa, T. Hasegawa, Implementation of ship energy-saving operations with mitsubishi air lubrication system. Mitsubishi Heavy Ind. Tech. Rev. 50(2), 44–49 (2013)

    Google Scholar 

  28. S.H. Park, I. Lee, Optimization of drag reduction effect of air lubrication for a tanker model. Int. J. Naval Archit. Ocean Eng. (2018). https://doi.org/10.1016/j.ijnaoe.2017.09.003

    Article  Google Scholar 

  29. Y. Moriguchi, H. Kato, Influence of microbubble diameter and distribution on frictional resistance reduction. J Mar Sci Technol 7, 79–85 (2002)

    Article  Google Scholar 

  30. Y.H. Ozdemir et al., A numerical application to predict the resistance and wave pattern of kriso container ship. Brodogradnja. 67, 47–65 (2016). https://doi.org/10.21278/brod67204

    Article  Google Scholar 

  31. K. Elsherbiny, M. Terziev, T. Tezdogan, A. Incecik, M. Kotb, Numerical and experimental study on hydrodynamic performance of ships advancing through different canals. Ocean Eng. (2020). https://doi.org/10.1016/j.oceaneng.2019.106696

    Article  Google Scholar 

  32. Tokyo 2015 Workshop on CFD in Ship Hydrodynamics. From http://www.t2015.nmri.go.jp/. Accessed 5 Aug 2019

  33. J.H. Ferziger, M. Perić, Computational Ship Hydrodynamics: Nowadays and Way Forward (Springer, Berlin, 2012)

    Google Scholar 

  34. ITTC. Practical guidelines for ship CFD applications. Paper presented at the Proceedings of the 26th International Towing Tank Conference, Brazil, 2011

  35. M. Manninen, V. Taivassalo, S. Kallio, On the Mixture Model for Multiphase Flow (VTT Publications 288, Finland, 1996)

    Google Scholar 

  36. H. Sayyaadi, M. Nematollahi, Determination of optimum injection flow rate to achieve maximum micro bubble drag reduction in ship an experimental approach. Scientia Iranica 20(3), 535–541 (2013)

    Google Scholar 

  37. T. M. Mitakashi, Skin frictional resistance reduction device for ship hull and its method. Japan Patent No. JP 2008-120246 (2008). https://www.j-platpat.inpit.go.jp/p0200. Accessed 5 Oct 2019

  38. T. M. Mitakashi, Bubble injection device for ship skin frictional resistance reduction. Japan Patent No. JP 2012-166704 (2011). https://www.j-platpat.inpit.go.jp/p0200. Accessed 5 Oct 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Gamal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamal, M., Kotb, M., Naguib, A. et al. Numerical investigations of micro bubble drag reduction effect for container ships. Mar Syst Ocean Technol 16, 199–212 (2021). https://doi.org/10.1007/s40868-021-00104-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40868-021-00104-9

Keywords

Navigation