Skip to main content

Advertisement

Log in

Apigenin Release from Chitosan/Gelatin Membranes Promotes Osteogenic Differentiation of Adipose-Derived Mesenchymal Stem Cells

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

Apigenin is a widespread phytochemical with beneficial effects on osteoblastic differentiation. However, short half-life and unstable chemical structure restrict apigenin application in bone tissue engineering applications. Here, we investigated the impact of apigenin-loaded chitosan/gelatin (Api. Cs/Gel) membranes on the osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADMSCs).

Methods

Api10. Cs/Gel and Api25. Cs/Gel membranes were fabricated using the solution casting method, followed by characterizing their physicochemical and biological properties. hADMSCs were isolated from healthy donors and characterized using flow cytometry. hADMSCs were seeded onto Api. Cs/Gel membranes and cultured under osteogenic differentiation for 7 and 21 days. The expression of osteogenic markers ALP, RUNX2, OCN, and COL1 was assessed using real-time PCR, and calcium mineralization was analyzed using the quantitative Alizarin red S staining.

Results

The Api. Cs/Gel membranes were successfully fabricated, and characterization data confirmed their structural uniformity, chemical homogeneity, cross-linking, and apigenin incorporation. Membranes exhibited favorable degradation, swelling ratio, and long-term apigenin release. The membranes were non-toxic and supported hADMSCs attachment, viability, and proliferation. The expression of ALP, RUNX2, OCN, and COL1 and cellular mineralization increased on day 21, and significant overexpression was observed in hADMSCs seeded onto Apigenin-loaded membranes.

Conclusion

Cs/Gel membranes provided an approving matrix for cellular interactions and apigenin inclusion, followed by a sustained release associated with enhanced osteogenic differentiation of hADMSCs and matrix mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kenkre, J., & Bassett, J. (2018). The bone remodelling cycle. Ann Clin Biochem. https://doi.org/10.1177/0004563218759371

    Article  PubMed  Google Scholar 

  2. Dan, Y., Liu, O., Liu, Y., Zhang, Y. Y., Li, S., Feng, X. B., Shao, Z. W., Yang, C., Yang, S. H., & Hong, J. B. (2016). Development of novel biocomposite scaffold of chitosan-gelatin/nanohydroxyapatite for potential bone tissue engineering applications. Nanoscale Research Letters. https://doi.org/10.1186/s11671-016-1669-1

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mizoguchi, T., & Ono, N. (2021). The diverse origin of bone-forming osteoblasts. Journal of Bone and Mineral Research. https://doi.org/10.1002/jbmr.4410

    Article  PubMed  Google Scholar 

  4. Hutchings, G., Moncrieff, L., Dompe, C., Janowicz, K., Sibiak, R., Bryja, A., et al. (2020). Bone regeneration, reconstruction and use of osteogenic cells; from basic knowledge, animal models to clinical trials. Journal of Clinical Medicine. https://doi.org/10.3390/jcm9010139

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bozorgi, A., Bozorgi, M., Khazaei, M., & Soleimani, M. (2020). Decellularized extracellular matrices in bone tissue engineering: from cells to tissues. Cell and Tissue Biology. https://doi.org/10.1134/S1990519X20060127

    Article  Google Scholar 

  6. Black, C. R., Goriainov, V., Gibbs, D., Kanczler, J., Tare, R. S., & Oreffo, R. O. (2015). Bone tissue engineering. Current Molecular Biology Reports. https://doi.org/10.1007/s40610-015-0022-2

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bose, S., & Sarkar, N. (2020). Natural medicinal compounds in bone tissue engineering. Trends in Biotechnology. https://doi.org/10.1016/j.tibtech.2019.11.005

    Article  PubMed  Google Scholar 

  8. Dai, X., Yao, X., Zhang, W., Cui, H., Ren, Y., Deng, J., et al. (2022). The osteogenic role of barium titanate/polylactic acid piezoelectric composite membranes as guiding membranes for bone tissue regeneration. International Journal of Nanomedicine. https://doi.org/10.2147/IJN.S378422

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bozorgi, A., Khazaei, M., Soleimani, M., & Jamalpoor, Z. (2021). Application of nanoparticles in bone tissue engineering; a review on the molecular mechanisms driving osteogenesis. Biomaterials Science. https://doi.org/10.1039/D1BM00504A

    Article  PubMed  Google Scholar 

  10. Bozorgi, A., Mozafari, M., Khazaei, M., Soleimani, M., & Jamalpoor, Z. (2022). Fabrication, characterization, and optimization of a novel copper-incorporated chitosan/gelatin-based scaffold for bone tissue engineering applications. BioImpacts: BI. https://doi.org/10.34172/bi.2021.23451

    Article  PubMed  Google Scholar 

  11. Levengood, S. L., & Zhang, M. (2014). Chitosan-based scaffolds for bone tissue engineering. Journal of Materials Chemistry B. https://doi.org/10.1039/c4tb00027g

    Article  PubMed  PubMed Central  Google Scholar 

  12. Brun, P., Zamuner, A., Battocchio, C., Cassari, L., Todesco, M., Graziani, V., et al. (2021). Bio-functionalized chitosan for bone tissue engineering. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms22115916

    Article  PubMed  PubMed Central  Google Scholar 

  13. Thitiset, T., Damrongsakkul, S., Yodmuang, S., Leeanansaksiri, W., Apinun, J., & Honsawek, S. (2021). A novel gelatin/chitooligosaccharide/demineralized bone matrix composite scaffold and periosteum-derived mesenchymal stem cells for bone tissue engineering. Biomaterials Research. https://doi.org/10.1186/s40824-021-00220-y

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bellavia, D., Dimarco, E., Costa, V., Carina, V., De Luca, A., Raimondi, L., et al. (2021). Flavonoids in bone erosive diseases: Perspectives in osteoporosis treatment. Trends in Endocrinology and Metabolism. https://doi.org/10.1016/j.tem.2020.11.007

    Article  PubMed  Google Scholar 

  15. Weaver, C. M., Alekel, D. L., Ward, W. E., & Ronis, M. J. (2012). Flavonoid intake and bone health. Journal of Nutrition in Gerontology and Geriatrics. https://doi.org/10.1080/21551197.2012.698220

    Article  PubMed  PubMed Central  Google Scholar 

  16. Preethi Soundarya, S., Sanjay, V., Haritha Menon, A., Dhivya, S., & Selvamurugan, N. (2018). Effects of flavonoids incorporated biological macromolecules based scaffolds in bone tissue engineering. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2017.09.014

    Article  PubMed  Google Scholar 

  17. Bozorgi, A., Khazaei, S., Khademi, A., & Khazaei, M. (2020). Natural and herbal compounds targeting breast cancer, a review based on cancer stem cells. Iranian Journal of Basic Medical Sciences. https://doi.org/10.22038/ijbms.2020.43745.10270

    Article  PubMed  PubMed Central  Google Scholar 

  18. Salehi, B., Venditti, A., Sharifi-Rad, M., Kręgiel, D., Sharifi-Rad, J., Durazzo, A., et al. (2019). The therapeutic potential of apigenin. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms20061305

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jung, W. W. (2014). Protective effect of apigenin against oxidative stress-induced damage in osteoblastic cells. International Journal of Molecular Medicine. https://doi.org/10.3892/ijmm.2014.1666

    Article  PubMed  Google Scholar 

  20. Pan, F.-f, Shao, J., Shi, C.-J., Li, Z.-p, Fu, W.-m, & Zhang, J.-f. (2021). Apigenin promotes osteogenic differentiation of mesenchymal stem cells and accelerates bone fracture healing via activating Wnt/β-catenin signaling. American Journal of Physiology-Endocrinology and Metabolism. https://doi.org/10.1152/ajpendo.00543.2019

    Article  PubMed  Google Scholar 

  21. Huang, Y., Zhao, X., Zu, Y., Wang, L., Deng, Y., Wu, M., et al. (2019). Enhanced solubility and bioavailability of apigenin via preparation of solid dispersions of mesoporous silica nanoparticles. Iranian Journal of Pharmaceutical Research: IJPR. https://doi.org/10.22037/ijpr.2019.2347

    Article  PubMed  PubMed Central  Google Scholar 

  22. Soundarya, S. P., Sanjay, V., Menon, A. H., Dhivya, S., & Selvamurugan, N. (2018). Effects of flavonoids incorporated biological macromolecules based scaffolds in bone tissue engineering. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2017.09.014

    Article  Google Scholar 

  23. Bozorgi, A., Khazaei, M., Bozorgi, M., & Jamalpoor, Z. (2023). Fabrication and characterization of apigenin-loaded chitosan/gelatin membranes for bone tissue engineering applications. Journal of Bioactive and Compatable Polymers. https://doi.org/10.1177/08839115221149725

    Article  Google Scholar 

  24. Stamatialis, D. F., Papenburg, B. J., Gironés, M., Saiful, S., Bettahalli, S. N. M., Schmitmeier, S., et al. (2008). Medical applications of membranes: Drug delivery, artificial organs and tissue engineering. Journal of Membrane Science. https://doi.org/10.1016/j.memsci.2007.09.059

    Article  Google Scholar 

  25. de la Mata, A., Nieto-Miguel, T., López-Paniagua, M., Galindo, S., Aguilar, M. R., García-Fernández, L., et al. (2013). Chitosan–gelatin biopolymers as carrier substrata for limbal epithelial stem cells. Journal of Materials Science Materials in Medicine. https://doi.org/10.1007/s10856-013-5013-3

    Article  PubMed  Google Scholar 

  26. Li, W.-y, Jia, H., Wang, Z.-D., Zhai, F.-g, Sun, G.-d, Ma, D., et al. (2020). Combinatory transplantation of mesenchymal stem cells with flavonoid small molecule in acellular nerve graft promotes sciatic nerve regeneration. Journal of Tissue Engineering. https://doi.org/10.1177/2041731420980136

    Article  PubMed  PubMed Central  Google Scholar 

  27. Córdoba, A., Satué, M., Gómez-Florit, M., Hierro-Oliva, M., Petzold, C., Lyngstadaas, S. P., et al. (2015). Flavonoid-modified surfaces: Multifunctional bioactive biomaterials with osteopromotive, anti-inflammatory, and anti-fibrotic potential. Advanced Healthcare Materials. https://doi.org/10.1002/adhm.201400587

    Article  PubMed  Google Scholar 

  28. Jiang, L., Liu, Z., Cui, Y., Shao, Y., Tao, Y., & Mei, L. (2019). Apigenin from daily vegetable celery can accelerate bone defects healing. Journal of Functional Foods. https://doi.org/10.1016/j.jff.2019.01.043

    Article  Google Scholar 

  29. Tungmunnithum, D., Thongboonyou, A., Pholboon, A., & Yangsabai, A. (2018). Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines. https://doi.org/10.3390/medicines5030093

    Article  PubMed  PubMed Central  Google Scholar 

  30. de Souza, M. F., da Silva, H. N., Rodrigues, J. F. B., Macêdo, M. D. M., de Sousa, W. J. B., Barbosa, R. C., et al. (2023). Chitosan/gelatin scaffolds loaded with jatropha mollissima extract as potential skin tissue engineering materials. Polymers. https://doi.org/10.3390/polym15030603

    Article  PubMed  PubMed Central  Google Scholar 

  31. Raja, I. S., Preeth, D. R., Vedhanayagam, M., Hyon, S.-H., Lim, D., Kim, B., et al. (2021). Polyphenols-loaded electrospun nanofibers in bone tissue engineering and regeneration. Biomaterials Research. https://doi.org/10.1186/s40824-021-00229-3

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nayaka, Hanumantappa B., Londonkar, Ramesh L., Umesh, Madire K., & Tukappa, Asha. (2014). Antibacterial attributes of apigenin, isolated from Portulaca oleracea L. International Journal of Bacteriology, 5, 35. https://doi.org/10.1155/2014/175851

    Article  CAS  Google Scholar 

  33. Nagahama, H., Maeda, H., Kashiki, T., Jayakumar, R., Furuike, T., & Tamura, H. (2009). Preparation and characterization of novel chitosan/gelatin membranes using chitosan hydrogel. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2008.10.015

    Article  Google Scholar 

  34. Ribas, R. G., Montanheiro, T. L. A., Montagna, L. S., Prado, RFd., Lemes, A. P., Bastos Campos, T. M., et al. (2019). Water uptake in PHBV/wollastonite scaffolds: A kinetics study. Journal of Composites Science. https://doi.org/10.3390/jcs3030074

    Article  Google Scholar 

  35. Ma, H., Feng, C., Chang, J., & Wu, C. (2018). 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2018.08.026

    Article  PubMed  PubMed Central  Google Scholar 

  36. Xie, X.-H., Wang, X.-L., Zhang, G., He, Y.-X., Wang, X.-H., Liu, Z., et al. (2010). Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin. Biomedical Materials. https://doi.org/10.1088/1748-6041/5/5/054109

    Article  PubMed  Google Scholar 

  37. Tamburaci, S., Kimna, C., & Tihminlioglu, F. (2018). Novel phytochemical cissus quadrangularis extract–loaded chitosan/Na-carboxymethyl cellulose–based scaffolds for bone regeneration. Journal of Bioactive and Compatable Polymers. https://doi.org/10.1177/0883911518793913

    Article  Google Scholar 

  38. Nakamura, T., Nakamura-Takahashi, A., Kasahara, M., Yamaguchi, A., & Azuma, T. (2020). Tissue-nonspecific alkaline phosphatase promotes the osteogenic differentiation of osteoprogenitor cells. Biochemical and Biophysical Research Communications. https://doi.org/10.1016/j.bbrc.2020.01.136

    Article  PubMed  Google Scholar 

  39. Choi, E.-M. (2007). Apigenin increases osteoblastic differentiation and inhibits tumor necrosis factor-α-induced production of interleukin-6 and nitric oxide in osteoblastic MC3T3-E1 cells. Die Pharmazie-An International Journal of Pharmaceutical Sciences. https://doi.org/10.1691/ph.2007.3.6629

    Article  Google Scholar 

  40. Zhang, X., Zhou, C., Zha, X., Xu, Z., Li, L., Liu, Y., et al. (2015). Apigenin promotes osteogenic differentiation of human mesenchymal stem cells through JNK and p38 MAPK pathways. Molecular and Cellular Biochemistry. https://doi.org/10.1007/s11010-015-2452-9

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bailey, S., Karsenty, G., Gundberg, C., & Vashishth, D. (2017). Osteocalcin and osteopontin influence bone morphology and mechanical properties. Annals of the New York Academy of Sciences. https://doi.org/10.1111/nyas.13470

    Article  PubMed  PubMed Central  Google Scholar 

  42. Melguizo-Rodríguez, L., Manzano-Moreno, F. J., Illescas-Montes, R., Ramos-Torrecillas, J., de Luna-Bertos, E., Ruiz, C., et al. (2019). Bone protective effect of extra-virgin olive oil phenolic compounds by modulating osteoblast gene expression. Nutrients. https://doi.org/10.3390/nu11081722

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mroczek, J., Pikula, S., Suski, S., Weremiejczyk, L., Biesaga, M., & Strzelecka-Kiliszek, A. (2022). Apigenin modulates AnxA6- and TNAP-mediated osteoblast mineralization. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms232113179

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to show our gratitude to the Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran, for sharing their facilities and equipment during this research.

Funding

This work was funded by the AJA University of Medical Sciences, Tehran, Iran [Grant no IR.AJAUMS.REC.1400.301].

Author information

Authors and Affiliations

Authors

Contributions

AB: study design, experiment performance, manuscript writing, and editing. MK: technical supervision, manuscript editing. MB: experiment performance, statistical analysis, manuscript editing. ZJ: acquisition of funding; general supervision and administrative support, manuscript editing.

Corresponding author

Correspondence to Zahra Jamalpoor.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical Approval

This study was performed in line with the principles of the Declaration of Helsinki, along with the guidelines of the Ethics Committee of AJA University of Medical Sciences (Ethics no. IR.AJAUMS.REC.1400.301).

Consent to Participate

Before sample collection, informed consent was obtained from participants included in the study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozorgi, A., Khazaei, M., Bozorgi, M. et al. Apigenin Release from Chitosan/Gelatin Membranes Promotes Osteogenic Differentiation of Adipose-Derived Mesenchymal Stem Cells. J. Med. Biol. Eng. 44, 1–11 (2024). https://doi.org/10.1007/s40846-023-00832-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-023-00832-w

Keywords

Navigation