Skip to main content
Log in

Upper Limb Recovery in Cervical Spinal Cord Injury After a Brain-Computer Interface Controlled Functional Electrical Stimulation Intervention

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

Upper limb motor recovery is highly relevant for individuals with tetraplegia after spinal cord injury (SCI). Experimental interventions based on Brain–Computer Interfaces and Functional Electrical Stimulation (BCI-FES) could provide clinical benefits. However, their effects have been scarcely reported. For this reason, a pilot study was performed for assessing the feasibility of a BCI-FES intervention in tetraplegia.

Methods

Six chronic cervical SCI patients completed 12 intervention sessions with a BCI–FES controlled with the motor intention of paralyzed upper extremities. Differences in the Action Research Arm Test (ARAT), Spinal Cord Independence Measure (SCIM-III), Capabilities of Upper Extremity Questionnaire (CUE-Q), Upper Extremity Motor Score (UEMS) and Life Satisfaction Questionnaire were assessed to measure recovery. Patients’ performance and experience with the system were also evaluated.

Results

Half of the patients had a significant ARAT function improvement of more than 5.7 points. Five out of six patients had more independence, measured by a median increase of 9 points of the SCIM-III. Two patients had noticeable gains in life satisfaction and in the UEMS. There were no noticeable changes in the CUE-Q. Patients had an average success rate of 80% while attempting to control the system and rated their experience with the BCI-FES in the range of excellent with a workload perceived as moderately high.

Conclusion

Relevant clinical improvements associated with the BCI-FES intervention were observed in most of the patients. Moreover, the BCI-FES was successfully operated by patients and offered an adequate usability and workload. Although preliminary in nature, the observed effects of the BCI-FES intervention confirm its feasibility and potential for the neurorehabilitation of chronic cervical SCI patients, that currently have limited treatment options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data analyzed during this study are included in this published article.

Material availability

Not applicable.

References

  1. Hachem, L. D., Ahuja, C. S., & Fehlings, M. G. (2017). Assessment and management of acute spinal cord injury: From point of injury to rehabilitation. Journal of Spinal Cord Medicine, 40(6), 665–675. https://doi.org/10.1080/10790268.2017.1329076.

    Article  PubMed  PubMed Central  Google Scholar 

  2. McDaid, D., Park, A. L., Gall, A., Purcell, M., & Bacon, M. (2019). Understanding and modelling the economic impact of spinal cord injuries in the United Kingdom. Spinal Cord, 57(9), 778–788. https://doi.org/10.1038/s41393-019-0285-1.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Snoek, G. J., Ijzerman, M. J., Hermens, H. J., Maxwell, D., & Biering-Sorensen, F. (2004). Survey of the needs of patients with spinal cord injury: Impact and priority for improvement in hand function in tetraplegics. Spinal Cord, 42(9), 526–532. https://doi.org/10.1038/sj.sc.3101638.

    Article  CAS  PubMed  Google Scholar 

  4. Anderson, K. D. (2004). Targeting recovery: Priorities of the spinal cord-injured population. Journal of Neurotrauma, 21(10), 1371–1383. https://doi.org/10.1089/neu.2004.21.1371.

    Article  PubMed  Google Scholar 

  5. Serradj, N., Agger, S. F., & Hollis, E. R. (2017). Corticospinal circuit plasticity in motor rehabilitation from spinal cord injury. Neuroscience Letters, 652, 94–104. https://doi.org/10.1016/j.neulet.2016.12.003.

    Article  CAS  PubMed  Google Scholar 

  6. Torres-Espín, A., Forero, J., Fenrich, K. K., Lucas-Osma, A. M., Krajacic, A., Schmidt, E., Vavrek, R., Raposo, P., Bennett, D. J., Popovich, P. G., & Fouad, K. (2018). Eliciting inflammation enables successful rehabilitative training in chronic spinal cord injury. Brain, 141(7), 1946–1962. https://doi.org/10.1093/brain/awy128

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ethier, C., Gallego, J. A., & Miller, L. E. (2015). Brain-controlled neuromuscular stimulation to drive neural plasticity and functional recovery. Current Opinion in Neurobiology, 33, 95–102. https://doi.org/10.1016/j.conb.2015.03.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767–791. https://doi.org/10.1016/S1388-2457(02)00057-3.

    Article  PubMed  Google Scholar 

  9. Daly, J. J., & Huggins, J. E. (2015). Brain-computer interface: Current and emerging rehabilitation applications. Archives of Physical Medicine and Rehabilitation, 96(3), S1–S7. https://doi.org/10.1016/j.apmr.2015.01.007.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chaudhary, U., Birbaumer, N., & Ramos-Murguialday, A. (2016). Brain-computer interfaces for communication and rehabilitation. Nature Reviews Neurology, 12(9), 513–525. https://doi.org/10.1038/nrneurol.2016.113.

    Article  PubMed  Google Scholar 

  11. Hamid, S., & Hayek, R. (2008). Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: An overview. European Spine Journal, 17(9), 1256–1269. https://doi.org/10.1007/s00586-008-0729-3.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dobkin, B. H. (2003). Do electrically stimulated sensory inputs and movements lead to long-term plasticity and rehabilitation gains? Current Opinion in Neurology, 16(6), 685–691. https://doi.org/10.1097/00019052-200312000-00007.

    Article  PubMed  Google Scholar 

  13. Carel, C., Loubinoux, I., Boulanouar, K., Manelfe, C., Rascol, O., Celsis, P., & Chollet, F. (2000). Neural substrate for the effects of passive training on sensorimotor cortical representation: A study with functional magnetic resonance imaging in healthy subjects. Journal of Cerebral Blood Flow & Metabolism, 20(3), 478–484. https://doi.org/10.1097/00004647-200003000-00006

    Article  CAS  Google Scholar 

  14. Tabernig, C. B., Lopez, C. A., Carrere, L. C., Spaich, E. G., & Ballario, C. H. (2018). Neurorehabilitation therapy of patients with severe stroke based on functional electrical stimulation commanded by a brain computer interface. Journal of Rehabilitation and Assistive Technologies Engineering, 5, 205566831878928. https://doi.org/10.1177/2055668318789280.

    Article  Google Scholar 

  15. Cho, W., Heilinger, A., Xu, R., Zehetner, M., Schobesberger, S., Murovec, N., Ortner, R., & Guger, C. (2017). Hemiparetic stroke rehabilitation using avatar and electrical stimulation based on non-invasive brain computer interface. International Journal of Physical Medicine & Rehabilitation. https://doi.org/10.4172/2329-9096.1000411

    Article  Google Scholar 

  16. Kim, T., Kim, S., & Lee, B. (2016). Effects of action observational training plus brain-computer interface-based functional electrical stimulation on paretic arm motor recovery in patient with stroke: A randomized controlled trial. Occupational Therapy International, 23(1), 39–47. https://doi.org/10.1002/oti.1403

    Article  PubMed  Google Scholar 

  17. Daly, J. J., Cheng, R., Rogers, J., Litinas, K., Hrovat, K., & Dohring, M. (2009). Feasibility of a new application of noninvasive brain computer interface (BCI): A case study of training for recovery of volitional motor control after stroke. Journal of Neurologic Physical Therapy, 33(4), 203–211. https://doi.org/10.1097/NPT.0b013e3181c1fc0b

    Article  PubMed  Google Scholar 

  18. Trincado-Alonso, F., López-Larraz, E., Resquín, F., Ardanza, A., Pérez-Nombela, S., Pons, J. L., Montesano, L., & Gil-Agudo, Á. (2018). A pilot study of brain-triggered electrical stimulation with visual feedback in patients with incomplete spinal cord Injury. Journal of Medical and Biological Engineering, 38(5), 790–803. https://doi.org/10.1007/s40846-017-0343-0

    Article  Google Scholar 

  19. Osuagwu, B. C. A., Wallace, L., Fraser, M., & Vuckovic, A. (2016). Rehabilitation of hand in subacute tetraplegic patients based on brain computer interface and functional electrical stimulation: A randomised pilot study. Journal of Neural Engineering. https://doi.org/10.1088/1741-2560/13/6/065002

    Article  PubMed  Google Scholar 

  20. Jovanovic, L. I., Kapadia, N., Zivanovic, V., Rademeyer, H. J., Alavinia, M., McGillivray, C., Kalsi-Ryan, C., Popovic, M. R., & Marquez-Chin, C. (2021). Brain–computer interface-triggered functional electrical stimulation therapy for rehabilitation of reaching and grasping after spinal cord injury: A feasibility study. Spinal Cord Series and Cases, 7(1), 24. https://doi.org/10.1038/s41394-020-00380-4

    Article  PubMed  PubMed Central  Google Scholar 

  21. Billingham, S. A. M., Whitehead, A. L., & Julious, S. A. (2013). An audit of sample sizes for pilot and feasibility trials being undertaken in the United Kingdom registered in the United Kingdom Clinical Research Network database. BMC Medical Research Methodology, 13(1), 104. https://doi.org/10.1186/1471-2288-13-104.

    Article  PubMed  PubMed Central  Google Scholar 

  22. FDA. (2011). Investigational device exemptions (IDEs) for Early feasibility medical device clinical studies, including Certain first in human (FIH) studies., Pub. L. No. FDA-2011-D-0787.

  23. Rupp, R., Biering-Sørensen, F., Burns, S. P., Graves, D. E., Guest, J., Jones, L., Read, M. S., Rodriguez, G. M., Schuld, C., Tansey-MD, K. E., Walden, K., & Kirshblum, S. (2021). International standards for neurological classification of spinal cord Injury. Topics in Spinal Cord Injury Rehabilitation, 27(2), 1–22. https://doi.org/10.46292/sci2702-1

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hernandez-Rojas, L. G., Cantillo-Negrete, J., Mendoza-Montoya, O., Carino-Escobar, R. I., Leyva-Martinez, I., Aguirre-Guemez, A. V., Barrera-Ortiz, A., Carrillo-Mora, P., & Antelis, J. M. (2022). Brain-computer interface controlled functional electrical stimulation: Evaluation with healthy subjects and spinal cord Injury Patients. Ieee Access : Practical Innovations, Open Solutions, 10, 46834–46852. https://doi.org/10.1109/ACCESS.2022.3170906

    Article  Google Scholar 

  25. Delijorge, J., Mendoza-Montoya, O., Gordillo, J. L., Caraza, R., Martinez, H. R., & Antelis, J. M. (2020). Evaluation of a P300-based brain-machine interface for a robotic hand-orthosis control. Frontiers in Neuroscience. https://doi.org/10.3389/fnins.2020.589659

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ang, K. K., Chin, Z. Y., Wang, C., Guan, C., & Zhang, H. (2012). Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Frontiers in Neuroscience, 6, 39. https://doi.org/10.3389/fnins.2012.00039

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wei, X. S., Wu, J., & Zhou, Z. H. (2017). Scalable algorithms for multi-instance learning. IEEE Transactions on Neural Networks and Learning Systems, 28(4), 975–987. https://doi.org/10.1109/TNNLS.2016.2519102

    Article  PubMed  Google Scholar 

  28. Yozbatiran, N., Der-Yeghiaian, L., & Cramer, S. C. (2008). A standardized approach to performing the action research arm test. Neurorehabilitation and Neural Repair, 22(1), 78–90. https://doi.org/10.1177/1545968307305353

    Article  PubMed  Google Scholar 

  29. Itzkovich, M., Shefler, H., Front, L., Gur-Pollack, R., Elkayam, K., Bluvshtein, V., Gelernter, I., & Catz, A. (2018). SCIM III (spinal cord independence measure version III): Reliability of assessment by interview and comparison with assessment by observation. Spinal Cord, 56(1), 46–51. https://doi.org/10.1038/sc.2017.97

    Article  CAS  PubMed  Google Scholar 

  30. Oleson, C., & Marino, R. J. (2014). Responsiveness and concurrent validity of the revised capabilities of upper extremity-questionnaire (CUE-Q) in patients with acute tetraplegia. Spinal Cord, 52(8), 625–628. https://doi.org/10.1038/sc.2014.77

    Article  CAS  PubMed  Google Scholar 

  31. Post, M. W., van Leeuwen, C. M., van Koppenhagen, C. F., & de Groot, S. (2012). Validity of the life satisfaction questions, the life satisfaction questionnaire, and the satisfaction with life scale in persons with spinal cord Injury. Archives of Physical Medicine and Rehabilitation, 93(10), 1832–1837. https://doi.org/10.1016/j.apmr.2012.03.025.

    Article  PubMed  Google Scholar 

  32. Hart, S. G. (2012). Nasa-task load index (NASA-TLX); 20 years later. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 50(9), 904–908. https://doi.org/10.1177/154193120605000909

    Article  Google Scholar 

  33. Brooke, J. (1996). SUS - A “quick and dirty” usability scale. In T. J. Jordan (Ed.), Usability evaluation in industry.

    Google Scholar 

  34. Ahuja, C. S., Wilson, J. R., Nori, S., Kotter, M. R. N., Druschel, C., Curt, A., & Fehlings, M. G. (2017). Traumatic spinal cord injury. Nature Reviews Disease Primers, 3(1), 17018. https://doi.org/10.1038/nrdp.2017.18.

    Article  PubMed  Google Scholar 

  35. van der Lee, J. H., Beckerman, H., Lankhorst, G. J., & Bouter, L. M. (2001). The responsiveness of the action research arm test and the Fugl–Meyer assessment scale in chronic stroke patients. Journal of Rehabilitation Medicine, 33(3), 110–113. https://doi.org/10.1080/165019701750165916

    Article  PubMed  Google Scholar 

  36. Scivoletto, G., Tamburella, F., Laurenza, L., & Molinari, M. (2013). The spinal cord independence measure: How much change is clinically significant for spinal cord injury subjects. Disability and Rehabilitation, 35(21), 1808–1813. https://doi.org/10.3109/09638288.2012.756942.

    Article  PubMed  Google Scholar 

  37. Marino, R. J., Shea, J. A., & Stineman, M. G. (1998). The capabilities of upper extremity instrument: Reliability and validity of a measure of functional limitation in tetraplegia. Archives of Physical Medicine and Rehabilitation, 79(12), 1512–1521. https://doi.org/10.1016/S0003-9993(98)90412-9.

    Article  CAS  PubMed  Google Scholar 

  38. Scivoletto, G., Glass, C., Anderson, K. D., Galili, T., Benjamin, Y., Front, L., Aidinoff, E., Bluvshtein, V., Itzkovich, M., Aito, S., Baroncini, I., Benito-Penalva, J., Castellano, S., Osman, A., Silva, P., & Catz, A. (2015). An international age- and gender-controlled model for the spinal cord injury ability realization measurement index (SCI-ARMI). Neurorehabilitation and Neural Repair, 29(1), 25–32. https://doi.org/10.1177/1545968314524631

    Article  PubMed  Google Scholar 

  39. Borsci, S., Federici, S., & Lauriola, M. (2009). On the dimensionality of the system usability scale: A test of alternative measurement models. Cognitive Processing, 10(3), 193–197. https://doi.org/10.1007/s10339-009-0268-9

    Article  PubMed  Google Scholar 

  40. Francisco, G. E., Yozbatiran, N., Berliner, J., O’Malley, M. K., Pehlivan, A. U., Kadivar, Z., Fitle, K., & Boake, C. (2017). Robot-assisted training of arm and hand movement shows functional improvements for incomplete cervical spinal cord injury. American Journal of Physical Medicine & Rehabilitation, 96(10), S171–S177. https://doi.org/10.1097/PHM.0000000000000815

    Article  Google Scholar 

  41. Zariffa, J., Kapadia, N., Kramer, J. L. K., Taylor, P., Alizadeh-Meghrazi, M., Zivanovic, V., Willms, R., Townson, A., Curt, A., Popovic, M. R., & Steeves, J. D. (2012). Feasibility and efficacy of upper limb robotic rehabilitation in a subacute cervical spinal cord injury population. Spinal Cord, 50(3), 220–226. https://doi.org/10.1038/sc.2011.104

    Article  CAS  PubMed  Google Scholar 

  42. Ballester, B. R., Maier, M., Duff, A., Cameirão, M., Bermúdez, S., Duarte, E., Cuxart, A., Rodríguez, S., San Segundo Mozo, R. M., & Verschure, P. F. M. J. (2019). A critical time window for recovery extends beyond one-year post-stroke. Journal of Neurophysiology, 122(1), 350–357. https://doi.org/10.1152/jn.00762.2018

    Article  PubMed  PubMed Central  Google Scholar 

  43. Huang, R., Nikooyan, A. A., Moore, L. D., Zdunowski, S., Morikawa, E., Sierro, T., Sayenko, D., Gad, P., Homsey, T., Le, T., Madhavan, M. A., Abdelshahid, M., Abdelshahid, M., Zhou, Y., Nuwer, M. R., Sarrafzadeh, M., Edgerton, V. R., & Lu, D. C. (2022). Minimal handgrip force is needed for transcutaneous electrical stimulation to improve hand functions of patients with severe spinal cord injury. Scientific Reports, 12(1), 7733. https://doi.org/10.1038/s41598-022-11306-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Backus, D., Cordo, P., Gillott, A., Kandilakis, C., Mori, M., & Raslan, A. M. (2014). Assisted movement with proprioceptive stimulation reduces impairment and restores function in incomplete spinal cord Injury. Archives of Physical Medicine and Rehabilitation, 95(8), 1447–1453. https://doi.org/10.1016/j.apmr.2014.03.011

    Article  PubMed  Google Scholar 

  45. Freyvert, Y., Yong, N. A., Morikawa, E., Zdunowski, S., Sarino, M. E., Gerasimenko, Y., Edgerton, V. R., & Lu, D. C. (2018). Engaging cervical spinal circuitry with non-invasive spinal stimulation and buspirone to restore hand function in chronic motor complete patients. Scientific Reports, 8(1), 15546. https://doi.org/10.1038/s41598-018-33123-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tasiemski, T., Priebe, M. M., & Wilski, M. (2013). Life satisfaction and life values in people with spinal cord injury living in three asian countries: A multicultural study. The Journal of Spinal Cord Medicine, 36(2), 118–126. https://doi.org/10.1179/2045772312Y.0000000074.

    Article  PubMed  PubMed Central  Google Scholar 

  47. van Koppenhagen, C. F., Post, M. W., van der Woude, L. H., de Witte, L. P., van Asbeck, F. W., de Groot, S., van den Heuvel, W., & Lindeman, E. (2008). Changes and determinants of life satisfaction after spinal cord injury: A cohort study in the netherlands. Archives of Physical Medicine and Rehabilitation, 89(9), 1733–1740. https://doi.org/10.1016/j.apmr.2007.12.042

    Article  PubMed  Google Scholar 

  48. Zulauf-Czaja, A., Al-Taleb, M. K. H., Purcell, M., Petric-Gray, N., Cloughley, J., & Vuckovic, A. (2021). On the way home: A BCI-FES hand therapy self-managed by sub-acute SCI participants and their caregivers: A usability study. Journal of NeuroEngineering and Rehabilitation, 18(1), 44. https://doi.org/10.1186/s12984-021-00838-y.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Vǔckovíc, A., Wallace, L., & Allan, D. B. (2015). Hybrid brain-computer interface and functional electrical stimulation for sensorimotor training in participants with tetraplegia: A proof-of-concept study. Journal of Neurologic Physical Therapy, 39(1), 3–14. https://doi.org/10.1097/NPT.0000000000000063

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Karla Daniela Uribe Rebollo and Emmanuel Simental Aldaba for their aid during therapy sessions. The authors also acknowledge National Council of Science and Technology of Mexico (CONACYT) for grant 268958 and grant PN2015-873.

Funding

This work was supported by the National Council of Science and Technology of Mexico (CONACYT) under Grant 268958 and Grant PN2015-873.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by JC-N, RIC-E, OM-M and IL-M. The first draft of the manuscript was written by JC-N and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jessica Cantillo-Negrete or Javier M. Antelis.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics Approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics and Research Committees of the National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra” (No. 08/19).”

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent to Publish

The authors affirm that human research participants provided informed consent for publication of their clinical and demographic information, as well as the video in online resource 1.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 17731 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cantillo-Negrete, J., Carino-Escobar, R.I., Leyva-Martinez, I. et al. Upper Limb Recovery in Cervical Spinal Cord Injury After a Brain-Computer Interface Controlled Functional Electrical Stimulation Intervention. J. Med. Biol. Eng. 43, 522–531 (2023). https://doi.org/10.1007/s40846-023-00824-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-023-00824-w

Keywords

Navigation