Skip to main content
Log in

A P300 Brain-Computer Interface for Lower Limb Robot Control Based on Tactile Stimulation

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

Tactile brain-computer interfaces can be used to express control intentions, avoiding motor imagery difficulties and visual fatigue. Tactile BCI has the problems of poor reproducibility and unclear features in applications. For further applications, a single-trial analysis of tactile-evoked P300 experiments is needed.

Methods

A brain-computer interface for single-trial analysis of vibrotactile stimulation-evoked P300 is proposed. It uses the combination of frequency and time period information as the feature extraction method and uses the maximum value of the most significant EEG channel as the input of the classifier to identify the control intention of the subject and use it to control the lower limb robot.

Results

The online experimental results show that online classification accuracy can reach 89.35 ± 4.86%, which realizes the closed loop of human neural motor rehabilitation. In addition, Subject 9, an elderly person, achieves an online accuracy rate of 83.33%.

Conclusion

A brain-computer interface based on the haptic-evoked P300 is developed and applied to control a lower limb rehabilitation robot. The classification results of an elderly individual verify the feasibility of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mrachaczkersting, N., Ning, J., Stevenson, A., Niazi, I. K., Kostic, V., Pavlovic, A., et al. (2016). Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface. Clinical Neurophysiol, 115(3), 1410–1421. https://doi.org/10.1152/jn.00918.2015

    Article  Google Scholar 

  2. Frolov, A. A., Kozlovskaya, I. B., Biryukova, E. V., & Bobrov, P. D. (2018). Use of robotic devices in post-stroke rehabilitation. Neuroscience and Behavioural Physiology, 48(9), 1053–1066. https://doi.org/10.1007/s11055-018-0668-3

    Article  Google Scholar 

  3. Pichiorri, F., & Mattia, D. (2020). Brain-computer interfaces in neurologic rehabilitation practice. Clinical Neurology, 168, 101–116. https://doi.org/10.1016/B978-0-444-63934-9.00009-3

    Article  Google Scholar 

  4. Mrachacz-Kersting, N., Ibáñez, J., & Farina, D. (2021). Towards a mechanistic approach for the development of non-invasive brain-computer interfaces for motor rehabilitation. The Journal of Physiology, 599(9), 2361–2374. https://doi.org/10.1113/JP281314

    Article  CAS  PubMed  Google Scholar 

  5. Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain-computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767–791. https://doi.org/10.1016/S1388-2457(02)00057-3

    Article  PubMed  Google Scholar 

  6. Feng, Z., Sun, Y., Qian, L., Qi, Y., Wang, Y., Guan, C., & Sun, Y. (2021). Design a novel BCI for neurorehabilitation using concurrent LFP and EEG features: a case study. IEEE Transactions on Biomedical Engineering, 69(5), 1554–1563. https://doi.org/10.1109/TBME.2021.3115799

    Article  Google Scholar 

  7. Leoni, J., Strada, S. C., Tanelli, M., Jiang, K., Brusa, A., & Proverbio, A. M. (2021). Automatic stimuli classification from ERP data for augmented communication via brain-computer interfaces. Expert Systems with Applications, 184, 115572. https://doi.org/10.1016/j.eswa.2021.115572

    Article  Google Scholar 

  8. Gao, Q., Dou, L., Belkacem, A. N., & Chen, C. (2017). Noninvasive electroencephalogram based control of a robotic arm for writing task using hybrid BCI system. BioMed Research International, 2017. https://doi.org/10.1155/2017/8316485

  9. Xiao, X., Xu, M., Jin, J., Wang, Y., Jung, T. P., & Ming, D. (2019). Discriminative canonical pattern matching for single-trial classification of ERP components. IEEE Transactions on Biomedical Engineering, 67(8), 2266–2275. https://doi.org/10.1109/TBME.2019.2958641

    Article  PubMed  Google Scholar 

  10. Chen, X., Chen, Z., Gao, S., & Gao, X. (2014). A high-ITR SSVEP-based BCI speller. Brain-Computer Interfaces, 1(3–4), 181–191. https://doi.org/10.1142/S0129065714500191

    Article  Google Scholar 

  11. Journal of Neural Engineering, 18(6), 066005.http://doi.org/10.1088/1741-2552/ac3044

  12. Chaudhary, U., Birbaumer, N., & Ramos-Murguialday, A. (2016). Brain-computer interfaces for com-munication and rehabilitation. Nature Reviews Neurology, 12(9), 513–525. https://doi.org/10.1038/nrneurol.2017.23

    Article  PubMed  Google Scholar 

  13. Birbaumer, N., & Cohen, L. G. (2007). Brain-computer interfaces: communication and restoration of movement in paralysis. The Journal of Physiology, 579(3), 621–636. https://doi.org/10.1113/jphysiol.2006.125633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brunner, P., Joshi, S., Briskin, S., Wolpaw, J. R., Bischof, H., & Schalk, G. (2010). Does the ‘P300’speller depend on eye gaze? Journal of Neural Engineering, 7(5), 056013. https://doi.org/10.1088/1741-2560/7/5/056013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Science Robotics, 4(31), eaaw6844.http://doi.org/10.1126/scirobo-tics.aaw6844

  16. Zhou, Q., Cheng, R., Yao, L., Ye, X., & Xu, K. (2022). Neurofeedback training of alpha relative power improves the performance of motor imagery brain-computer interface. Frontiers in Human Neuroscience, 16. https://doi.org/10.3389/fnhum.2022.831995

  17. Kaufmann, T., Herweg, A., & Kübler, A. (2014). Toward brain-computer interface based wheelchair control utilizing tactually-evoked event-related potentials. Journal of Neuroengineering and Rehabilitation, 11(1), 1–17. https://doi.org/10.1186/1743-0003-11-7

    Article  Google Scholar 

  18. Brouwer, A. M., & Van Erp, J. B. (2010). A tactile P300 brain-computer interface. Frontiers in Neuroscience. https://doi.org/10.3389/fnins.2010.00019. 19.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chu, C., Luo, J., Tian, X., Han, X., & Guo, S. (2021). A P300 brain-computer interface paradigm based on electric and vibration simple command tactile stimulation. Frontiers in Human Neuroscience, 15, 641357. https://doi.org/10.3389/fnhum.2021.641357

    Article  PubMed  PubMed Central  Google Scholar 

  20. Polich, J. (1986). Attention, probability, and task demands as determinants of P300 latency from auditory stimuli. Electroencephalography and Clinical Neurophysiology, 63(3), 251–259. https://doi.org/10.1016/0013-4694(86)90093-3

    Article  CAS  PubMed  Google Scholar 

  21. Xu, M., Han, J., Wang, Y., Jung, T. P., & Ming, D. (2020). Implementing over 100 command codes for a high-speed hybrid brain-computer interface using concurrent P300 and SSVEP features. IEEE T-ransactions on Biomedical Engineering, 67(11), 3073–3082. https://doi.org/10.1109/TBME.2020.2975614

    Article  Google Scholar 

  22. Clinical EEG and Neuroscience, 45(1), 14–21. http://doi.org/10.1177/1550059413505533

  23. Ortner, R., Lugo, Z., Noirhomme, Q., Laureys, S., & Guger, C. (2014). A tactile brain-computer interface for severely disabled patients. In 2014 IEEE Haptics Symposium (HAPTICS), 235–237. https://doi.org/10.1109/HAPTICS.2014.6775460

  24. Severens, M., Van der Waal, M., Farquhar, J., & Desain, P. (2014). Comparing tactile and visual gaze-independent brain-computer interfaces in patients with amyotrophic lateral sclerosis and healthy users. Clinical Neurophysiology, 125(11), 2297–2304. https://doi.org/10.1016/j.clinph.2014.03.005

    Article  CAS  PubMed  Google Scholar 

  25. Frontiers in Neuroscience, 12, 423.http://doi.org/10.3389/fnins.2018.00423

  26. Cauna, N. (1964). The effect of aging on the receptor organs of the human dermis. Advances in Biology of Skin, 6, 63–96.

    Google Scholar 

  27. Iwasaki, T., Goto, N., Goto, J., Ezure, H., & Moriyama, H. (2003). The aging of human Meissner’s corpuscles as evidenced by parallel sectioning. Okajimas Folia Anatomica Japonica, 79(6), 185–189. https://doi.org/10.2535/ofaj.79.185

    Article  PubMed  Google Scholar 

  28. Wickremaratchi, M. M., & Llewelyn, J. G. (2006). Effects of ageing on touch. Postgraduate Medical Journal, 82(967), 301–304. https://doi.org/10.1136/pgmj.2005.039651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Han, X., Niu, J., & Guo, S. (2020). A tactile-based brain computer interface P300 paradigm using vibration frequency and spatial location. Journal of Medical and Biological Engineering, 40(6), 773–782. https://doi.org/10.1007/s40846-020-00535-6

    Article  Google Scholar 

  30. Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009

    Article  PubMed  Google Scholar 

  31. Pires, G., Nunes, U., & Castelo-Branco, M. (2012). Comparison of a row-column speller vs. a novel lateral single-character speller: Assessment of BCI for severe motor disabled patients. Clinical Neurophysiology Official Journal of the International Federation of Clinical Neurophysiology, 123(6), 1168. https://doi.org/10.1016/j.clinph.2011.10.040

    Article  PubMed  Google Scholar 

  32. Mattout, J., Perrin, M., Bertrand, O., & Maby, E. (2015). Improving BCI performance through co-adaptation: applications to the P300-speller. Annals of Physical & Rehabilitation Medicine, 58(1), 23. https://doi.org/10.1016/j.rehab.2014.10.006

    Article  Google Scholar 

  33. Speier, W., Deshpande, A., & Pouratian, N. (2014). A method for optimizing EEG electrode number and configuration for signal acquisition in P300 speller systems. Clinical Neurophysiology, 126(6), 1171–1177. https://doi.org/10.1016/j.clinph.2014.09.021

    Article  PubMed  PubMed Central  Google Scholar 

  34. Akram, F., Han, H. S., & Kim, T. S. (2014). A P300-based brain computer interface system for words typing. Computers in Biology & Medicine, 45(2), 118–125. https://doi.org/10.1016/j.compbiomed.2013.12.001

    Article  Google Scholar 

  35. Akram, F., Han, S. M., & Kim, T. S. (2015). An efficient word typing P300-BCI system using a modified T9 interface and random forest classifier. Computers in Biology and Medicine, 56, 30–36. https://doi.org/10.1109/EMBC.2013.6609985

    Article  PubMed  Google Scholar 

  36. Liu, Y., Wang, J., Yin, E., Yu, Y., Zhou, Z., & Hu, D. (2019). An tactile ERP-based brain-computer interface for communication. International Journal Of Human–Computer Interaction, 35(7), 559–567. https://doi.org/10.1080/10447318.2018.1471839

    Article  CAS  Google Scholar 

  37. Veneman, J. F., Kruidhof, R., Hekman, E. E., Ekkelenkamp, R., Van Asseldonk, E. H., & Van Der Kooij, H. (2007). Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15(3), 379–386. https://doi.org/10.1109/TNSRE.2007.903919

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all volunteers for their participation in the study. This work is supported by the Shanghai Science and Technology Innovation Action Plan (21S31902500) and grants from the S&T Program of Hebei (Grant Number 22375001D and 22372001D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingling Chen.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, X., Guo, S., Chen, L. et al. A P300 Brain-Computer Interface for Lower Limb Robot Control Based on Tactile Stimulation. J. Med. Biol. Eng. 43, 22–31 (2023). https://doi.org/10.1007/s40846-022-00766-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-022-00766-9

Keywords

Navigation