Skip to main content

Advertisement

Log in

Computer Aided Diagnosis Based Hand Thermal Image Analysis: A Potential Tool for the Evaluation of Rheumatoid Arthritis

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

The aim of the study was to evaluate the potential of the thermogram in diagnosing rheumatoid arthritis and to compare the implementation of k-means algorithm and fuzzy c means algorithm using a computer aided diagnostic tool for classification of rheumatoid arthritis (RA) and normal based on the feature extracted from the segmented thermal image. The skin surface temperature measurement, thermal image segmentation based on k-means and fuzzy c-means algorithm and the feature extraction were used in this study. The average skin surface temperature measured at the second meta carpo-phalangeal (MCP) and MCP3 in RA patients (35.40 ± 0.6 °C and 35.52 ± 0.7 °C, respectively) were significantly higher (p < 0.01) than those measured in normal subjects (33.66 ± 0.2 °C and 33.74 ± 0.2 °C, respectively). The mean difference in temperature between RA patients and healthy controls in the MCP2 and MCP3 region was found to be 1.74 and 1.78 °C respectively. The receiver operating characteristics (ROC) curve depicted a sensitivity of 86.6% and specificity of 79% achieved in the MCP region of the hand thermal image. Thermal image segmentation using the k-means algorithm provided better segmentation results compared to the fuzzy c-means algorithm in diagnosing the disease. Therefore, the computer aided diagnostic based thermography method could be used as a validated quantification method for interpreting and evaluating arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wong, R., Davis, A. M., Badley, E., Grewal, R., & Mohammed, M. (2010). Prevalence of arthritis and rheumatic disease around the World: A growing burden and implications for health care needs Resource document. Models of care in arthritis, bone and joint disease (MOCA). Retrieved Jan, 2016 from http://www.modelsofcare.ca/pdf/10-02.pdf.

  2. Rudan, I., Sidhu, S., Papana, A., Meng, S., Xin-Wei, Y., Wang, W., et al. (2015). Prevalence of rheumatoid arthritis in low- and middle-income countries: A systematic review and analysis. Journal of Global Health, 5(1), 010409. https://doi.org/10.7189/jogh.05.010409.

    Article  Google Scholar 

  3. Ymmons, D. P., & Gabriel, S. E. (2011). Epidemiology of CVD in rheumatic disease, with a focus on RA and SLE. Nature Reviews Rheumatology, 7, 399–408.

    Article  Google Scholar 

  4. Taylor, P. C. (2003). The value of sensitive imaging modalities in rheumatoid arthritis. Arthritis Research & Therapy, 5, 210. https://doi.org/10.1186/ar794.

    Article  Google Scholar 

  5. Tan, Y. K., Ostergaard, M., & Conaghan, P. G. (2012). Imaging tools in rheumatoid arthritis: Ultrasound vs magnetic resonance imaging. Rheumatology, 51, vii 36–vii 42.

    Article  Google Scholar 

  6. Tins, B. J., & Butler, R. (2013). Imaging in rheumatology: Reconciling radiology and rheumatology. Insights Imaging, 4(6), 799–810.

    Article  Google Scholar 

  7. Patil, P., & Dasgupta, B. (2012). Role of diagnostic ultrasound in the assessment of musculoskeletal diseases. Therapeutic Advances in Musculoskeletal Disease, 4, 341–355.

    Article  Google Scholar 

  8. Narvaez, J. A., Narvaez, J., Lama, E. D., & Albert, M. D. (2010). MR imaging of early rheumatoid arthritis. Radiographics, 30, 143–165.

    Article  Google Scholar 

  9. Sinha, A., Mishra, J. C., & Shit, G. C. (2016). Effect of heat transfer on unsteady MHD flow of blood in a permeable vessel in the presence of non-uniform heat source. Alexandria Engineering Journal, 55(3), 2023–2033.

    Article  Google Scholar 

  10. Borojevic, N., Kolaric, D., Grazio, S., Grubisic, F., Antonini, S., Alexandra Nola, I., et al. (2011). Thermography hand temperature distribution in rheumatoid arthritis and osteoarthritis. Periodicum Biologorum, 113, 445–448.

    Google Scholar 

  11. Szenrkuti, A., Kavanagh, H., & Grazio, S. (2011). Infrared thermography and image analysis for biomedical use. Periodicum Biologorum, 113, 385–392.

    Google Scholar 

  12. Engel, J. M., & Saier, U. (1984). Thermographic standard examinations in rheumatology and guidelines for their findings. Baden-Baden: State Rehumatology Hospital.

    Google Scholar 

  13. Zhu, W. P., & Xin, X. R. (1999). Study on the distribution pattern of skin temperature in normal Chinese and detection of the depth of early burn wound by infrared thermography. Annals of the New York Academy of Sciences, 888(1), 300–313.

    Article  Google Scholar 

  14. Ammer, K., Engelbert, B., & Kern, E. (2002). The determination of normal temperature values of finger joints. Thermology International, 12, 23–33.

    Google Scholar 

  15. Spalding, S. J., Kwoh, C. K., Boudreau, R., Enama, J., Lunich, J., Huber, D., et al. (2008). Three-dimensional and thermal surface imaging produces reliable measures of joint shape and temperature: A potential tool for quantifying arthritis. Arthritis Research & Therapy, 10, R10.

    Article  Google Scholar 

  16. Duarte, A., Carrao, L., Espanha, M., Viana, T., Freitas, D., Bartolo, P., et al. (2014). Segmentation algorithms for thermal images. Procedia Technology, 16, 1560–1569.

    Article  Google Scholar 

  17. Zhou, Q., Li, Z., & Aggarwal, J. K. (2004). Boundary extraction in thermal images by edge map. In ACM Symposium on Applied Computing (pp. 254–258).

  18. Zadeh, H. G., Haddadnia, J., Seryasat, O. R., & Isfahani, S. M. M. (2016). Segmenting breast cancerous regions in thermal images using fuzzy active contours. EXCLI Journal, 15, 532–550.

    Google Scholar 

  19. Chen, M., & Ludwig, S. A. (2017). Color image segmentation using fuzzy C-regression model. Advances in Fuzzy Systems. https://doi.org/10.1155/2017/4582948.

    MathSciNet  Google Scholar 

  20. Cebeci, Z., & Yildiz, F. (2015). Comparison of K-means and Fuzzy C-means algorithms on different cluster structures. Journal of Agricultural Informatics, 6(3), 13–23.

    Article  Google Scholar 

  21. Sathish, A., & Mohana sundaram, J. (2014). Comparison of K-means and fuzzy C-means algorithm for breast cancer analysis. International Journal of Computational Intelligence and Informatics, 4(1), 54–58.

    Google Scholar 

  22. Pham, D. L., Xu, C., & Prince, J. L. (2000). Current methods in medical image segmentation. Annual Review of Biomedical Engineering, 2, 315–337.

    Article  Google Scholar 

  23. Christ, M. C. J., & Parvathi, R. M. S. (2012). Segmentation of medical image using k means clustering and marker controlled watershed algorithm. European Journal of Scientific Research, 71, 190–194.

    Google Scholar 

  24. Bhowmik, M. K., Bardhan, S., Das, K., Bhattacharjee, D., & Nath, S. (2016). Pain related inflammation analysis using infrared images. In SPIE Commercial Scientific Sensing and Imaging (p. 986116).

  25. Shahin, M., Badawi, A., & Kamel, M. (2007). Biometric authentication using fast correlation of near infrared hand vein patterns. International Journal of Biological and Medical Sciences, 2(3), 141–148.

    Google Scholar 

  26. Bajwa, U. I., Vardasca, R., Ring, F., & Plassmann, P. (2010). Comparison of boundary detection techniques to improve image analysis in medical thermography. Imaging Science Journal, 58(1), 12–19.

    Article  Google Scholar 

  27. Samokhin, A. V., Buryanov, O. A., Kotiuk, V. V., & Karnauh, Y. V. (2011). Quantitative assessment of thermal images of the hand joints in Psoriatic arthritis patients. Radiation Diagnostics. Radiation Therapy, 1, 14–17.

    Google Scholar 

  28. Fushimi, H., Inoue, T., Yamada, Y., Matsuyama, Y., Kubo, M., & Kameyama, M. (1996). Abnormal vasoreaction of peripheral arteries to cold stimulus of both hands in diabetics. Diabetes Research and Clinical Practice, 32, 55–59.

    Article  Google Scholar 

  29. Panda, S., Sahu, S., Jena, P., & Chattopadhyay, S. (2012). Comparing fuzzy C-means and K-means clustering techniques: A comprehensive study AISC, 166, 451–460.

  30. Ghosh, S., & Dubey, S. K. (2013). Comparitive analysis of K-means and Fuzzy C-means algorithms. IJACSA, 4, 35–48.

    Google Scholar 

  31. Jipkate, M. B. R., & Gohokar, M. V. V. (2012). A Comparitive analysis of Fuzzy C means clustering and K-means clustering algorithms. IJCER, 2, 737–739.

    Google Scholar 

  32. Yin, J., Sun, H., Yang, J., & Guo, Q. (2014). Comparison of K-means and Fuzzy C-means algorithm performance for automated determination of arterial input function. PLoS ONE, 9(2), e85884. https://doi.org/10.1371/journal.pone.0085884.

    Article  Google Scholar 

  33. Mishra, R., Sharma, B. L., Gupta, R., Pandya, S., Agarwal, S., Agarwal, P., et al. (2008). Indian rheumatology association consensus statement on the management of adults with rheumatoid arthritis. Indian Journal of Rheumatology, 3(3), S1–S16.

    Article  Google Scholar 

  34. Retrieved December 10, 2015 from http://www.iact-org.org.

  35. Mittal, M., Sharma, R. K., & Singh, V. P. (2014). Validation of k-means and threshold based clustering method. International Journal of Advancements in Technology, 5(2), 153–160.

    Google Scholar 

  36. Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R. J., & Wu, A. Y. (2002). An efficient K means clustering algorithm: Analysis and implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 881–892.

    Article  MATH  Google Scholar 

  37. Snekhalatha, U., Anburajan, M., Sowmiya, V., Venkatraman, B., & Menaga, M. (2015). Automated hand thermal image segmentation and feature extraction in evaluation of rheumatoid arthritis. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 229, 319–331.

    Article  Google Scholar 

  38. Chattopadhyay, Subhagata, & Pratihar, D. K. (2011). A comparative study of fuzzy C-means algorithm and entropy-based fuzzy clustering algorithms. Computing and Informatics, 30, 701–720.

    MATH  Google Scholar 

  39. Salvatore, D., & Reagle, D. (2002). Theory and problem of statistics and economterics. Schaum outline series. Mcgraw-hill.

  40. Girisha, A. B., Chandrashekhar, M. C., & Kurian, M. Z. (2013). Texture feature extraction of video frames using GLCM. International Journal of Engineering Trends and Technology, 4, 2718–2721.

    Google Scholar 

  41. Frize, M., Karsh, J., Herry, C., Adea, C., Aleem, I., & Payeur, P. (2009). Preliminary results of severity of illness measures of rheumatoid arthritis using infrared imaging. International workshop on medical measurements and applications, Cetraro, Italy.

  42. Vardasca, R., Ring, E. F. J., Plassmann, P., & Jones, C. D. (2012). Thermal symmetry of the upper and lower extremities in healthy subjects. Thermology International, 22(2), 53–60.

    Google Scholar 

  43. Rathore, S., & Bhalerao, S. V. (2015). Designing of Neuro-fuzzy based thermal imaging system on MATLAB for detection of rheumatoid arthritis. International Journal of Engineering Research and General Science, 3(2), 592–596.

    Google Scholar 

  44. Frize, M., Adea, C., Payeur, P., Primio, G.D., Karsh, J., & Ogungbemile, A. (2011). Detection of rheumatoid arthritis using infrared imaging. In: Proceedings of the SPIE vol 79620M. Medical Imaging. doi: 10.1117/12.874552.

  45. Snekhalatha, U., Anburajan, M., Teena, T., Venkatraman, B., Menaka, M., & Raj, B. (2011). Thermal image analysis and segmentation of hand in evaluation of rheumatoid arthritis. In Proceedings of 2011 IEEE International Conference on Computer Communications and Informatics. doi: 10.1109/ICCCI.2012.6158784.

  46. Schwammle, V., & Jensen, O. N. (2010). A simple and fast method to determine the parameters for fuzzy c-means cluster analysis. Bioinformatics, 26(22), 2841–2848.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snekhalatha Umapathy.

Ethics declarations

Conflict of interest

This manuscript has been read and approved by all the authors. This paper is not under consideration by any other publications and has not been published elsewhere. The authors have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umapathy, S., Vasu, S. & Gupta, N. Computer Aided Diagnosis Based Hand Thermal Image Analysis: A Potential Tool for the Evaluation of Rheumatoid Arthritis. J. Med. Biol. Eng. 38, 666–677 (2018). https://doi.org/10.1007/s40846-017-0338-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-017-0338-x

Keywords

Navigation