Skip to main content
Log in

Chiral-functionalized membranes for chiral drugs sieving

用于手性药物筛分的手性功能化膜

  • Articles
  • Special Topic: Biomaterials and Bioinspired Materials
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Current trend that integrates chiral designs into robust membrane systems is providing distinct horizons for the development of chiral separation technology. However, creating chiral sites in-between membrane laminates is still an open issue. Herein, we demonstrate a decorated layered chitosan/graphene oxide (CG) membrane via non-covalent interactions with L-tryptophan derivatives (LPWM), yielding materials with chiral functionality and superior mechanical strength. LPWM introduces chiral environment into the membrane, giving rise to visual recognition sensitivity and decent enantioseparation performance toward chiral drug molecules, with optical isomeric excess value exceeding 80% for pseudoephedrine (PEP). The chiral discrimination is associated with preferential binding of one of the isomers due to stronger or additional H-bonds with chiral assemblies. This work not only paves a new way for the fabrication of chiral membranes via a simple non-covalent interaction, but also guides a potential direction to realize enantioseparation employing decorated laminated membranes.

摘要

将手性整合到薄膜体系中为手性分离技术的发展提供了独特的方向. 然而, 在膜层之间创建手性位点仍是一个有待解决的问题. 在此, 我们制作了一种壳聚糖/氧化石墨烯(CG)基薄膜, 通过与L-色氨酸衍生物(LPWM)的非共价相互作用, CG-LPWM薄膜不仅保持优异的机械强度, 同时具有手性功能. LPWM在薄膜中引入了手性环境, 使得薄膜不仅能够视觉识别手性分子, 而且对手性药物具有一定的分离性能: 伪麻黄碱的光学异构体过量值超过80%. 手性识别源于手性组装体与其中一种异构体具有更强或更多的氢键作用导致的优先结合. 这项工作通过简单的非共价相互作用制作了手性薄膜, 为手性修饰的层状膜实现对映体识别与分离指引了方向.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brandt JR, Salerno F, Fuchter MJ. The added value of small-molecule chirality in technological applications. Nat Rev Chem, 2017, 1: 0045

    Article  CAS  Google Scholar 

  2. Yang Y, Zhang Y, Wei Z. Supramolecular helices: Chirality transfer from conjugated molecules to structures. Adv Mater, 2013, 25: 6039–6049

    Article  CAS  PubMed  Google Scholar 

  3. Du C, Li Z, Zhu X, et al. Hierarchically self-assembled homochiral helical microtoroids. Nat Nanotechnol, 2022, 17: 1294–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Peng Y, Gong T, Zhang K, et al. Engineering chiral porous metal-organic frameworks for enantioselective adsorption and separation. Nat Commun, 2014, 5: 4406

    Article  CAS  PubMed  Google Scholar 

  5. Coelho MM, Fernandes C, Remião F, et al. Enantioselectivity in drug pharmacokinetics and toxicity: Pharmacological relevance and analytical methods. Molecules, 2021, 26: 3113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Candelaria L, Frolova LV, Kowalski BM, et al. Surface-modified three-dimensional graphene nanosheets as a stationary phase for chromatographic separation of chiral drugs. Sci Rep, 2018, 8: 14747

    Article  PubMed  PubMed Central  Google Scholar 

  7. Qian HL, Yang CX, Yan XP. Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation. Nat Commun, 2016, 7: 12104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gassmann E, Kuo JE, Zare RN. Electrokinetic separation of chiral compounds. Science, 1985, 230: 813–814

    Article  CAS  PubMed  Google Scholar 

  9. Chan JY, Zhang H, Nolvachai Y, et al. Incorporation of homochirality into a zeolitic imidazolate framework membrane for efficient chiral separation. Angew Chem, 2018, 130: 17376–17380

    Article  Google Scholar 

  10. Torsi L, Farinola GM, Marinelli F, et al. A sensitivity-enhanced field-effect chiral sensor. Nat Mater, 2008, 7: 412–417

    Article  CAS  PubMed  Google Scholar 

  11. Chen X, Kang Y, Zeng S. Analysis of stereoisomers of chiral drug by mass spectrometry. Chirality, 2018, 30: 609–618

    Article  CAS  PubMed  Google Scholar 

  12. Zhu YY, Wu XD, Gu SX, et al. Free amino acid recognition: A bisbinaphthyl-based fluorescent probe with high enantioselectivity. J Am Chem Soc, 2018, 141: 175–181

    Article  PubMed  Google Scholar 

  13. Zhang QP, Wang Z, Zhang ZW, et al. Triptycene-based chiral porous polyimides for enantioselective membrane separation. Angew Chem Int Ed, 2021, 60: 12781–12785

    Article  CAS  Google Scholar 

  14. Wang X, Wolfbeis OS. Optical methods for sensing and imaging oxygen: Materials, spectroscopies and applications. Chem Soc Rev, 2014, 43: 3666–3761

    Article  CAS  PubMed  Google Scholar 

  15. Vespalec R, Boček P. Chiral separations in capillary electrophoresis. Chem Rev, 2000, 100: 3715–3754

    Article  CAS  PubMed  Google Scholar 

  16. Tian H, Zheng N, Li S, et al. Characterization of chiral amino acids from different milk origins using ultra-performance liquid chromatography coupled to ion-mobility mass spectrometry. Sci Rep, 2017, 7: 46289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Das S, Xu S, Ben T, et al. Chiral recognition and separation by chirality-enriched metal-organic frameworks. Angew Chem Int Ed, 2018, 57: 8629–8633

    Article  CAS  Google Scholar 

  18. Lu Y, Zhang H, Chan JY, et al. Homochiral MOF–polymer mixed matrix membranes for efficient separation of chiral molecules. Angew Chem Int Ed, 2019, 131: 16928–16935

    Article  Google Scholar 

  19. Qi Y, Xia Y, Li P, et al. Plastic-swelling preparation of functional graphene aerogel fiber textiles. Adv Fiber Mater, 2023, 5: 2016–2027

    Article  CAS  Google Scholar 

  20. Liu J, Wang N, Yu LJ, et al. Bioinspired graphene membrane with temperature tunable channels for water gating and molecular separation. Nat Commun, 2017, 8: 2011

    Article  PubMed  PubMed Central  Google Scholar 

  21. Guo J, Zhang Y, Yang F, et al. Ultra-permeable dual-mechanism-driven graphene oxide framework membranes for precision ion separations. Angew Chem Int Ed, 2023, 62: e202302931

    Article  CAS  Google Scholar 

  22. Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: Synthesis, properties, and applications. Adv Mater, 2010, 22: 3906–3924

    Article  CAS  PubMed  Google Scholar 

  23. Chen D, Feng H, Li J. Graphene oxide: Preparation, functionalization, and electrochemical applications. Chem Rev, 2012, 112: 6027–6053

    Article  CAS  PubMed  Google Scholar 

  24. Chung C, Kim YK, Shin D, et al. Biomedical applications of graphene and graphene oxide. Acc Chem Res, 2013, 46: 2211–2224

    Article  CAS  PubMed  Google Scholar 

  25. Thebo KH, Qian X, Zhang Q, et al. Highly stable graphene-oxide-based membranes with superior permeability. Nat Commun, 2018, 9: 1486

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang Y, Wu N, Wang Y, et al. Graphite phase carbon nitride based membrane for selective permeation. Nat Commun, 2019, 10: 2500

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shen B, Kim Y, Lee M. Supramolecular chiral 2D materials and emerging functions. Adv Mater, 2020, 32: 1905669

    Article  CAS  Google Scholar 

  28. Lewis RV. Spider silk: Ancient ideas for new biomaterials. Chem Rev, 2006, 106: 3762–3774

    Article  CAS  PubMed  Google Scholar 

  29. Sun M, Li J. Graphene oxide membranes: Functional structures, preparation and environmental applications. Nano Today, 2018, 20: 121–137

    Article  CAS  Google Scholar 

  30. Liu G, Jin W, Xu N. Two-dimensional-material membranes: A new family of high-performance separation membranes. Angew Chem Int Ed, 2016, 55: 13384–13397

    Article  CAS  Google Scholar 

  31. Marcano DC, Kosynkin DV, Berlin JM, et al. Improved synthesis of graphene oxide. ACS Nano, 2010, 4: 4806–4814

    Article  CAS  PubMed  Google Scholar 

  32. Qin M, Li Y, Zhang Y, et al. Solvent-controlled topological evolution from nanospheres to superhelices. Small, 2020, 16: 2004756

    Article  CAS  Google Scholar 

  33. Liu G, Zhang D, Feng C. Control of three-dimensional cell adhesion by the chirality of nanofibers in hydrogels. Angew Chem Int Ed, 2014, 53: 7789–7793

    Article  CAS  Google Scholar 

  34. Lu H, Zhao Y, Qin S, et al. Fluorine substitution tunes the nanofiber chirality of supramolecular hydrogels to promote cell adhesion and proliferation. Adv Fiber Mater, 2023, 5: 377–387

    Article  CAS  Google Scholar 

  35. Qian X, Li N, Wang Q, et al. Chitosan/graphene oxide mixed matrix membrane with enhanced water permeability for high-salinity water desalination by pervaporation. Desalination, 2018, 438: 83–96

    Article  CAS  Google Scholar 

  36. Zhang Y, Zhang M, Jiang H, et al. Bio-inspired layered chitosan/graphene oxide nanocomposite hydrogels with high strength and pH-driven shape memory effect. Carbohydr Polyms, 2017, 177: 116–125

    Article  CAS  Google Scholar 

  37. Khan YH, Islam A, Sarwar A, et al. Novel green nano composites films fabricated by indigenously synthesized graphene oxide and chitosan. Carbohydr Polyms, 2016, 146: 131–138

    Article  CAS  Google Scholar 

  38. Mehwish N, Dou X, Zhao C, et al. Chirality transfer in supramolecular co-assembled fibrous material enabling the visual recognition of sucrose. Adv Fiber Mater, 2020, 2: 204–211

    Article  CAS  Google Scholar 

  39. Yang D, Duan P, Liu M. Dual upconverted and downconverted circularly polarized luminescence in donor-acceptor assemblies. Angew Chem Int Ed, 2018, 130: 9357–9361

    Article  Google Scholar 

  40. Zhu X, Li Y, Duan P, et al. Self-assembled ultralong chiral nanotubes and tuning of their chirality through the mixing of enantiomeric components. Chem Eur J, 2010, 16: 8034–8040

    Article  CAS  PubMed  Google Scholar 

  41. Fan H, Wang L, Zhao K, et al. Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules, 2010, 11: 2345–2351

    Article  CAS  PubMed  Google Scholar 

  42. Zhu G, Zhu X, Fan Q, et al. Raman spectra of amino acids and their aqueous solutions. SpectroChim Acta Part A-Mol Biomol Spectr, 2011, 78: 1187–1195

    Article  Google Scholar 

  43. Nagatomo S, Nagai M, Ogura T, et al. Near-UV circular dichroism and UV resonance raman spectra of tryptophan residues as a structural marker of proteins. J Phys Chem B, 2013, 117: 9343–9353

    Article  CAS  PubMed  Google Scholar 

  44. Koch H, Polepil S, Eisen K, et al. Raman microspectroscopy and multivariate data analysis: Optical differentiation of aqueous D- and L-tryptophan solutions. Phys Chem Chem Phys, 2017, 19: 30533–30539

    Article  CAS  PubMed  Google Scholar 

  45. Yeom J, Guimaraes PPG, Ahn HM, et al. Chiral supraparticles for controllable nanomedicine. Adv Mater, 2020, 32: 1903878

    Article  CAS  Google Scholar 

  46. Feng W, Kim JY, Wang X, et al. Assembly of mesoscale helices with near-unity enantiomeric excess and light-matter interactions for chiral semiconductors. Sci Adv, 2017, 3: e1601159

    Article  PubMed  PubMed Central  Google Scholar 

  47. Shen J, Okamoto Y. Efficient separation of enantiomers using stereo-regular chiral polymers. Chem Rev, 2016, 116: 1094–1138

    Article  CAS  PubMed  Google Scholar 

  48. Gumustas M, Ozkan SA, Chankvetadze B. Analytical and preparative scale separation of enantiomers of chiral drugs by chromatography and related methods. Curr Med Chem, 2018, 25: 4152–4188

    Article  CAS  PubMed  Google Scholar 

  49. Han D, Yan L, Chen W, et al. Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state. Carbohydr Polyms, 2011, 83: 653–658

    Article  CAS  Google Scholar 

  50. Hamley I, Castelletto V. Small-angle scattering of block copolymersin the melt, solution and crystal states. Prog Polym Sci, 2004, 29: 909–948

    CAS  Google Scholar 

  51. Zhang S, Zheng Y, An H, et al. Covalent organic frameworks with chirality enriched by biomolecules for efficient chiral separation. Angew Chem Int Ed, 2018, 57: 16754–16759

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Leading Talents in Science and Technology Innovation under the National Ten Thousand Talents Plan, the National Natural Science Foundation of China (51833006 and 52003154), the Innovation Program of Shanghai Municipal Education Commission (201701070002E00061), the Science and Technology Commission of Shanghai Municipality (19441903000 and 19ZR1425400), Shanghai Jiao Tong University (SJTU) Trans-med Awards Research (WF540162603), Shanghai Pujiang Program (20PJ1407400), and the Natural Science Foundation of Shanghai (20ZR1425500).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions He S performed the experiments, analyzed the data, and revised the manuscript. Zhang Y carried out the experiments and wrote the original draft. Baddi S revised the manuscript. Feng C and Zhao C supervised the project. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Changli Zhao  (赵常利) or Chuanliang Feng  (冯传良).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Sijia He received her Bachelor degree from Tianjin University in 2020. She is currently a PhD student at the laboratory of Prof. Chuanliang Feng, Shanghai Jiao Tong University. Her research interests include the development of stimuli-responsive chiral supramolecular assemblies for biomedical applications.

Chuanliang Feng received his PhD degree from the University of Twente (the Netherlands) in 2005, and then he worked at the Max-Planck Institute for Polymer Research as a postdoctoral researcher (Mainz, Germany). From 1998 to 2009, he was a research scientist at Biomade Technology Foundation (Groningen, the Netherlands). Now he is a distinguished professor at the School of Materials Science and Technology, Shanghai Jiao Tong University. His research mainly focuses on functionalized polymeric nanomaterials, bioadhesion materials, and supramolecular hydrogels. Important topics are the synthesis and characterization of stimuli-sensitive polymers and biomimetic materials as well as applications of biomaterials in regenerative medicine.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Zhang, Y., Baddi, S. et al. Chiral-functionalized membranes for chiral drugs sieving. Sci. China Mater. (2024). https://doi.org/10.1007/s40843-023-2806-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40843-023-2806-8

Keywords

Navigation