Skip to main content
Log in

3D surfactant-dispersed graphenes as cathode interfacial materials for organic solar cells

三维表面活性剂-石墨烯复合阴极界面材料在有机太阳能电池中的应用

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Graphene dispersions in low-boiling-point green solvents have wide applications in coatings, conducting inks, batteries, electronics and solar cells. Two three-dimensional (3D) cathode interfacial materials (CIMs) (1,3,5,7,9,11,13,15-octa-(9-bis(30-(N,N-dimethylamino)propyl)-2,7-fluorene)-vinylpentacyclo-octasiloxane) (POSSFN) and (1,3,5,7-tetra-(9-bis(30-(N,N-dimethylamino)propyl)-2,7-fluorene)-adamantane) (ADMAFN) are excellent surfactants for dispersing graphene in ethanol at the concentration of 0.97–1.18 mg mL−1, in agreement with their calculated large adsorption energies on graphene. The results of electron spin resonance, Raman, scanning Kelvin probe microscopy and X-ray photoelectron spectroscopy measurements indicate that the amino groups could n-dope graphene or form dipole interaction with graphene. The two 3D-surfactant-based graphene composites (POSSFN-G and ADMAFN-G) can work as high-performance CIMs in organic solar cells (OSCs), which improve the power conversion efficiency (PCE) of the OSCs based on PM6:Y6 to 15.9%–16.1%. ADMAFN forms dipole interaction with graphene in ADMAFN-G and the composite CIM delivers high PCE of 16.11% in the OSCs, while POSSFN forms n-doped composition with graphene in POSSFN-G which works well as thicker CIM film in the OSCs.

摘要

低沸点绿色溶剂中分散石墨烯可广泛应用于涂料、导电油墨、 电池、 电子产品和太阳能电池等领域. 研究发现, 在乙醇溶液中, 两种三维阴极界面材料POSSFN和ADMAFN分散石墨烯的浓度可达到0.97–1.18 mg mL−1, 通过计算得知这两种材料在石墨烯表面具有较大的吸附能. 通过ESR、 Raman、 SKPM和XPS等测试手段证实, POSSFN侧链上的氨基能够与石墨烯发生n-掺杂作用; 而AD-MAFN与石墨烯之间能够形成偶极相互作用. 两种三维界面修饰-石墨烯复合材料(POSSFN-G和ADMAFN-G)均可作为阴极界面修饰材料应用于有机太阳能电池中, 并使基于PM6:Y6光活性层的有机太阳能电池的能量转换效率(PCE)提高到了15.9%–16.1%, 其中基于存在偶极相互作用的复合材料ADMAFN-G阴极修饰层的有机太阳能电池的PCE达到16.11%; 使用存在n-掺杂作用的POSSFN-G阴极修饰层的器件, 在厚膜状态下依然可获得较高的能量转换效率.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu G, Gao J, Hummelen JC, et al. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270: 1789–1791

    Article  CAS  Google Scholar 

  2. Service RF. Outlook brightens for plastic solar cells. Science, 2011, 332: 293

    Article  CAS  Google Scholar 

  3. Hou J, Inganäs O, Friend RH, et al. Organic solar cells based on non-fullerene acceptors. Nat Mater, 2018, 17: 119–128

    Article  CAS  Google Scholar 

  4. Lin Y, Wang J, Zhang ZG, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater, 2015, 27: 1170–1174

    Article  CAS  Google Scholar 

  5. Sun C, Pan F, Bin H, et al. A low cost and high performance polymer donor material for polymer solar cells. Nat Commun, 2018, 9: 743

    Article  CAS  Google Scholar 

  6. Fan Q, Su W, Wang Y, et al. Synergistic effect of fluorination on both donor and acceptor materials for high performance non-fullerene polymer solar cells with 13.5% efficiency. Sci China Chem, 2018, 61: 531–537

    Article  CAS  Google Scholar 

  7. Zhao W, Li S, Yao H, et al. Molecular optimization enables over 13% efficiency in organic solar cells. J Am Chem Soc, 2017, 139: 7148–7151

    Article  CAS  Google Scholar 

  8. Yuan J, Zhang Y, Zhou L, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3: 1140–1151

    Article  CAS  Google Scholar 

  9. Cui Y, Yao H, Zhang J, et al. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat Commun, 2019, 10: 2515

    Article  CAS  Google Scholar 

  10. Cui C, Li Y, Li Y. Fullerene derivatives for the applications as acceptor and cathode buffer layer materials for organic and perovskite solar cells. Adv Energy Mater, 2017, 7: 1601251

    Article  CAS  Google Scholar 

  11. Wang C, Yang J. Interface modification for organic and perovskite solar cells. Sci China Mater, 2016, 59: 743–756

    Article  CAS  Google Scholar 

  12. Wang W, He Y, Qi L. High-efficiency colorful perovskite solar cells using TiO2 nanobowl arrays as a structured electron transport layer. Sci China Mater, 2020, 63: 35–46

    Article  CAS  Google Scholar 

  13. Lv M, Li S, Jasieniak JJ, et al. A hyperbranched conjugated polymer as the cathode interlayer for high-performance polymer solar cells. Adv Mater, 2013, 25: 6889–6894

    Article  CAS  Google Scholar 

  14. Lv M, Li Y, Wei X, et al. Intermolecular n-doping nonconjugated polymer cathode interfacial materials for organic solar cells. ACS Appl Energy Mater, 2019, 2: 2238–2245

    Article  CAS  Google Scholar 

  15. Wu Z, Sun C, Dong S, et al. n-Type water/alcohol-soluble naphthalene diimide-based conjugated polymers for high-performance polymer solar cells. J Am Chem Soc, 2016, 138: 2004–2013

    Article  CAS  Google Scholar 

  16. Kang Q, Ye L, Xu B, et al. A printable organic cathode interlayer enables over 13% efficiency for 1-cm2 organic solar cells. Joule, 2019, 3: 227–239

    Article  CAS  Google Scholar 

  17. Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669

    Article  CAS  Google Scholar 

  18. Geim AK, Novoselov KS. The rise of graphene. Nat Mater, 2007, 6: 183–191

    Article  CAS  Google Scholar 

  19. Jeon IY, Shin YR, Sohn GJ, et al. Edge-carboxylated graphene nanosheets via ball milling. Proc Natl Acad Sci USA, 2012, 109: 5588–5593

    Article  CAS  Google Scholar 

  20. Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: A review of graphene. Chem Rev, 2010, 110: 132–145

    Article  CAS  Google Scholar 

  21. Pan F, Sun C, Li Y, et al. Solution-processable n-doped graphene-containing cathode interfacial materials for high-performance organic solar cells. Energy Environ Sci, 2019, 12: 3400–3411

    Article  CAS  Google Scholar 

  22. Chen Y, Jiang Z, Gao M, et al. Efficiency enhancement for bulk heterojunction photovoltaic cells via incorporation of alcohol soluble conjugated polymer interlayer. Appl Phys Lett, 2012, 100: 203304

    Article  CAS  Google Scholar 

  23. Lv M, Jasieniak JJ, Zhu J, et al. A hybrid organic-inorganic three-dimensional cathode interfacial material for organic solar cells. RSC Adv, 2017, 7: 28513–28519

    Article  CAS  Google Scholar 

  24. Junquera J, Paz Ó, Sánchez-Portal D, et al. Numerical atomic orbitals for linear-scaling calculations. Phys Rev B, 2001, 64: 235111

    Article  CAS  Google Scholar 

  25. Troullier N, Martins JL. Efficient pseudopotentials for plane-wave calculations. Phys Rev B, 1991, 43: 1993–2006

    Article  CAS  Google Scholar 

  26. Zhang L, Zhang Z, He C, et al. Rationally designed surfactants for few-layered graphene exfoliation: Ionic groups attached to electron-deficient π-conjugated unit through alkyl spacers. ACS Nano, 2014, 8: 6663–6670

    Article  CAS  Google Scholar 

  27. Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotech, 2008, 3: 563–568

    Article  CAS  Google Scholar 

  28. Perumal S, Park KT, Lee HM, et al. PVP-b-PEO block copolymers for stable aqueous and ethanolic graphene dispersions. J Colloid Interface Sci, 2015, 464: 25–35

    Article  CAS  Google Scholar 

  29. Zhang X, Coleman AC, Katsonis N, et al. Dispersion of graphene in ethanol using a simple solvent exchange method. Chem Commun, 2010, 46: 7539–7541

    Article  CAS  Google Scholar 

  30. Chen W, Yan L. In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale, 2011, 3: 3132–3137

    Article  CAS  Google Scholar 

  31. Skaltsas T, Ke X, Bittencourt C, et al. Ultrasonication induces oxygenated species and defects onto exfoliated graphene. J Phys Chem C, 2013, 117: 23272–23278

    Article  CAS  Google Scholar 

  32. Ramanathan T, Abdala AA, Stankovich S, et al. Functionalized graphene sheets for polymer nanocomposites. Nat Nanotech, 2008, 3: 327–331

    Article  CAS  Google Scholar 

  33. Chen J, Pan J, Huang Q, et al. Graphene oxide/PEDOT:PSS as injection layer for quantum dot light emitting diode. Phys Status Solidi A, 2015, 212: 2856–2861

    Article  CAS  Google Scholar 

  34. Niu J, Yang D, Ren X, et al. Graphene-oxide doped PEDOT:PSS as a superior hole transport material for high-efficiency perovskite solar cell. Org Electron, 2017, 48: 165–171

    Article  CAS  Google Scholar 

  35. Tung VC, Kim J, Cote LJ, et al. Sticky interconnect for solution-processed tandem solar cells. J Am Chem Soc, 2011, 133: 9262–9265

    Article  CAS  Google Scholar 

  36. Blom PWM, Vissenberg MCJM. Charge transport in poly(p-phenylene vinylene) light-emitting diodes. Mater Sci Eng-R-Rep, 2000, 27: 53–94

    Article  Google Scholar 

  37. Zhou Y, Fuentes-Hernandez C, Shim J, et al. A universal method to produce low-work function electrodes for organic electronics. Science, 2012, 336: 327–332

    Article  CAS  Google Scholar 

  38. Graf D, Molitor F, Ensslin K, et al. Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett, 2007, 7: 238–242

    Article  CAS  Google Scholar 

  39. Movva HCP, Ramón ME, Corbet CM, et al. Self-aligned graphene field-effect transistors with polyethyleneimine doped source/drain access regions. Appl Phys Lett, 2012, 101: 183113

    Article  CAS  Google Scholar 

  40. Bult JB, Crisp R, Perkins CL, et al. Role of dopants in long-range charge carrier transport for p-type and n-type graphene transparent conducting thin films. ACS Nano, 2013, 7: 7251–7261

    Article  CAS  Google Scholar 

  41. Wei P, Liu N, Lee HR, et al. Tuning the Dirac point in CVD-grown graphene through solution processed n-type doping with 2-(2-methoxyphenyl)-1,3-dimethyl-2,3-dihydro-1H-benzoimidazole. Nano Lett, 2013, 13: 1890–1897

    Article  CAS  Google Scholar 

  42. Wu JL, Chen FC, Hsiao YS, et al. Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. ACS Nano, 2011, 5: 959–967

    Article  CAS  Google Scholar 

  43. Mihailetchi VD, Wildeman J, Blom PWM. Space-charge limited photocurrent. Phys Rev Lett, 2005, 94: 126602

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51820105003, 51863002 and 51973042), and the Excellent Young Scientific and Technological Talents of Guizhou, China (QKHPTRC [2019]5652).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Lv M, Chen X and Li Y designed the interfacial modification materials; Bai S and Li Y synthesized and characterized interfacial modification materials; Pan F and Lv M carried out the PSCs fabrication and characterization. Tang D carried out the simulation calculations of absorption energies. Lv M and Li Y supervised the project. Lv M, Chen X and Li Y wrote the paper. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Menglan Lv  (吕梦岚) or Yongfang Li  (李永舫).

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Fei Pan received his BSc degree in materials chemistry in 2016. Now he is a PhD candidate in Prof. Yongfang Li’s group in the Institute of Chemistry, Chinese Academy of Sciences (ICCAS). His current research is the synthesis of cathode interfacial materials and their applications in organic solar cells.

Menglan Lv received her PhD degree from Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences in 2014. Currently, she is a professor of Guizhou Institute of Technology. Her research interest is the synthesis of cathode interfacial materials and their applications in organic solar cells.

Yongfang Li is a professor in ICCAS and Soochow University. He received his PhD degree in Fudan University in 1986, and then did his postdoctoral research at ICCAS from 1986 to 1988. He became a staff in 1988 and promoted to professor in 1993 in ICCAS. He was elected as a member of the Chinese Academy of Sciences in 2013. His present research field is photovoltaic materials and devices for polymer solar cells.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, F., Bai, S., Wei, X. et al. 3D surfactant-dispersed graphenes as cathode interfacial materials for organic solar cells. Sci. China Mater. 64, 277–287 (2021). https://doi.org/10.1007/s40843-020-1401-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-020-1401-2

Keywords

Navigation