Skip to main content
Log in

A Limiting Viscosity Approach to the Riemann Problem in Blood Flow Through Artery

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

In this article, we consider the Riemann problem with arbitrary initial data for one-dimensional blood flow equations in the arterial circulation. Here, we establish the existence of the self-similar solution to the Riemann problem by limiting viscosity approach. We convert the Riemann problem to a boundary value problem by adding a suitable viscosity term and establish the existence of the solution. Finally, we construct the existence of the solution to this Riemann problem in the presence of vacuum state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Keyfitz, B.L., Kranzer, H.C.: A Viscosity Approximation to a System of Conservation Laws with No Classical Riemann Solution. Lecture Notes in Mathematics, vol. 1402. Springer, Berlin (1989)

  2. Li, S., Wang, Q., Yang, H.: Riemann problem for the aw-rascle model of traffic flow with general pressure. Bull. Malays. Math. Sci. Soc. 43, 3757–3775 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Minhajul, Zeidan, D., Sekhar, T.R.: On the wave interactions in the drift-flux equations of two-phase flows. Appl. Math. Comput. 327, 117–131 (2018)

  4. Wei, Z., Sun, M.: Riemann problem and wave interactions for a temple-class hyperbolic system of conservation laws. Bull. Malays. Math. Sci. Soc. 44, 4195–4221 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Minhajul, Sekhar, T.R.: Interaction of elementary waves with a weak discontinuity in an isothermal drift-flux model of compressible two-phase flows. Q. Appl. Math. 77, 671–688 (2019)

  6. Thanh, M.D., Vinh, D.X.: The Riemann problem with phase transitions for fluid flows in a nozzle. Bull. Malays. Math. Sci. Soc. 44, 2271–2317 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Minhajul, Sekhar, T.R.: Delta wave interactions in a non-strictly hyperbolic system with non-convex flux. Indian J. Pure Appl. Math. (2023). https://doi.org/10.1007/s13226-023-00390-6

  8. Smoller, J.A.: Shock Waves and Reaction–Diffusion Equations, vol. 258. Springer, Berlin (2012)

    MATH  Google Scholar 

  9. Quarteroni, A., Formaggia, L.: Mathematical modelling and numerical simulation of the cardiovascular system. Handb. Numer. Anal. 12, 3–127 (2004)

    MathSciNet  Google Scholar 

  10. Quarteroni, A., Veneziani, A., Zunino, P.: Mathematical and numerical modeling of solute dynamics in blood flow and arterial walls. SIAM J. Numer. Anal. 39, 1488–1511 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sherwin, S.J., Formaggia, L., Peiro, J., Franke, V.: Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system. Int. J. Numer. Methods Fluids 43, 673–700 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Formaggia, L., Lamponi, D., Quarteroni, A.: One-dimensional models for blood flow in arteries. J. Eng. Math. 47, 251–276 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Melicher, V., Gajdošík, V.: A numerical solution of a one-dimensional blood flow model-moving grid approach. J. Comput. Appl. Math. 215, 512–520 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Müller, L.O., Parés, C., Toro, E.F.: Well-balanced high-order numerical schemes for one-dimensional blood flow in vessels with varying mechanical properties. J. Comput. Phys. 242, 53–85 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Delestre, O., Lagree, P.Y.: A well-balanced finite volume scheme for blood flow simulation. Int. J. Numer. Methods Fluids 72, 177–205 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Montecinos, G.I., Müller, L.O., Toro, E.F.: Hyperbolic reformulation of a 1D viscoelastic blood flow model and ADER finite volume schemes. J. Comput. Phys. 266, 101–123 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Toro, E.F., Siviglia, A.: Flow in collapsible tubes with discontinuous mechanical properties: mathematical model and exact solutions. Commun. Comput. Phys. 13, 361–385 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Spiller, C., Toro, E.F., Vázquez-Cendón, M.E., Contarino, C.: On the exact solution of the Riemann problem for blood flow in human veins, including collapse. Appl. Math. Comput. 303, 178–189 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sheng, W., Zhang, Q., Zheng, Y.: The Riemann problem for a blood flow model in arteries. Commun. Comput. Phys. 27, 227–250 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sekhar, T.R., Minhajul: Elementary wave interactions in blood flow through artery. J. Math. Phys. 58, 101502 (2017)

  21. Ercole, G.: Delta-shock waves as self-similar viscosity limits. Q. Appl. Math. 58, 177–199 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sun, M.: Delta shock waves for the chromatography equations as self-similar viscosity limits. Q. Appl. Math. 69, 425–443 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang, H., Zhang, Y.: New developments of delta shock waves and its applications in systems of conservation laws. J. Differ. Equ. 252, 5951–5993 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sen, A., Sekhar, T.R.: Delta shock wave as self-similar viscosity limit for a strictly hyperbolic system of conservation laws. J. Math. Phys. 60, 051510 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dafermos, C.M.: Solution of the Riemann problem for a class of hyperbolic systems of conservation laws by the viscosity method. Arch. Ration. Mech. Anal. 52, 1–9 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tupciev, V.A.: On the method of introducing viscosity in the study of problems involving the decay of a discontinuity. Dokl. Akad. Nauk SSSR 211, 55–58 (1973)

    MathSciNet  MATH  Google Scholar 

  27. Dafermos, C.M., Diperna, R.J.: The Riemann problem for certain classes of hyperbolic systems of conservation laws. J. Differ. Equ. 20, 90–114 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  28. Slemrod, M.: A limiting “viscosity’’ approach to the Riemann problem for materials exhibiting change of phase. Arch. Ration. Mech. Anal. 105, 327–365 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Slemrod, M., Tzavaras, A.E.: A limiting viscosity approach for the Riemann problem in isentropic gas dynamics. Indiana Univ. Math. J. 38, 1047–1074 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fan, H.: A vanishing viscosity approach on the dynamics of phase transitions in van der Waals fluids. J. Differ. Equ. 103, 179–204 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hu, J.: A limiting viscosity approach to Riemann solutions containing delta-shock waves for nonstrictly hyperbolic conservation laws. Q. Appl. Math. 55, 361–373 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, T.P., Smoller, J.A.: On the vacuum state for the isentropic gas dynamics equations. Adv. Appl. Math. 1, 345–359 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minhajul.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Rosihan M. Ali.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, R., Minhajul A Limiting Viscosity Approach to the Riemann Problem in Blood Flow Through Artery. Bull. Malays. Math. Sci. Soc. 46, 184 (2023). https://doi.org/10.1007/s40840-023-01579-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40840-023-01579-y

Keywords

Mathematics Subject Classification

Navigation