Skip to main content
Log in

Spectral Transformation Associated with a Perturbed \(R_I\) Type Recurrence Relation

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

In this work, orthogonal polynomials satisfying \(R_I\) type recurrence relation are analyzed when the recurrence coefficients are modified. The structural relationship between the perturbed and the unperturbed polynomials along with the spectral properties and spectral transformation of continued fraction are investigated. It is demonstrated that the transfer matrix method is computationally more efficient than the classical method for obtaining perturbed \(R_I\) polynomials. Further, an interesting consequence of co-dilation on the Carathéodary function is presented. Finally, the study of co-recursion and co-dilation in connection to the unit circle is carried out with the help of an illustration. The interlacing and monotonicity of zeros between L-Jacobi polynomials and their perturbed forms are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Albayrak, D., Dernek, A., Dernek, N., Ucar, F.: New intregral transform with generalized Bessel-Maitland function kernel and its applications. Math. Methods Appl. Sci. 44(2), 1394–1408 (2021)

    MathSciNet  MATH  Google Scholar 

  2. Bansal, M.K., Kumar, D., Nisar, K.S., Singh, J.: Certain fractional calculus and integral transform results of incomplete \(\aleph \)-functions with applications. Math. Methods Appl. Sci. 43(8), 5602–5614 (2020)

    MathSciNet  MATH  Google Scholar 

  3. Behera, K.K., Sri Ranga, A., Swaminathan, A.: Orthogonal polynomials associated with complementary chain sequences. SIGMA Symmetry Integr. Geom. Methods Appl. 12, Paper No. 075, 17 pp (2016)

    MathSciNet  MATH  Google Scholar 

  4. Bracciali, C.F., Sri Ranga, A., Swaminathan, A.: Para-orthogonal polynomials on the unit circle satisfying three term recurrence formulas. Appl. Numer. Math. 109, 19–40 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Castillo, K.: On perturbed Szegő recurrences. J. Math. Anal. Appl. 411(2), 742–752 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Castillo, K.: Monotonicity of zeros for a class of polynomials including hypergeometric polynomials. Appl. Math. Comput. 266, 183–193 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Castillo, K.: On monotonicity of zeros of paraorthogonal polynomials on the unit circle. Linear Algebra Appl. 580, 474–490 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Castillo, K.: Markov’s theorem for weight functions on the unit circle. Constr. Approx. 55(2), 605–627 (2022)

    MathSciNet  MATH  Google Scholar 

  9. Castillo, K., Costa, M.S., Sri Ranga, A., Veronese, D.O.: A Favard type theorem for orthogonal polynomials on the unit circle from a three term recurrence formula. J. Approx. Theory 184, 146–162 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Castillo, K., Marcellán, F., Rivero, J.: On co-polynomials on the real line. J. Math. Anal. Appl. 427(1), 469–483 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Castillo, K., Marcellán, F., Rivero, J.: On perturbed orthogonal polynomials on the real line and the unit circle via Szegő’s transformation. Appl. Math. Comput. 302, 97–110 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Castillo, K., Marcellán, F., Rivero, J.: On co-polynomials on the real line and the unit circle, in Operations research, engineering, and cyber security, 69–94, Springer Optim. Appl., 113, Springer, Cham

  13. Castillo, K., Petronilho, J.: Refined interlacing properties for zeros of paraorthogonal polynomials on the unit circle. Proc. Am. Math. Soc. 146, 3285–3294 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Chihara, T.S.: On co-recursive orthogonal polynomials. Proc. Am. Math. Soc. 8, 899–905 (1957)

    MathSciNet  MATH  Google Scholar 

  15. Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach Science Publishers, New York (1978)

    MATH  Google Scholar 

  16. Costa, M.S., Felix, H.M., Sri Ranga, A.: Orthogonal polynomials on the unit circle and chain sequences. J. Approx. Theory 173, 14–32 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Coussement, J., Kuijlaars, A.B.J., Van Assche, W.: Direct and inverse spectral transform for the relativistic Toda lattice and the connection with Laurent orthogonal polynomials. Inverse Probl. 18(3), 923–942 (2002)

    MathSciNet  MATH  Google Scholar 

  18. Dimitrov, D.K., Ranga, A.S.: Monotonicity of zeros of orthogonal Laurent polynomials. Methods Appl. Anal. 9(1), 1–11 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Dini, J.: Sur les formes linéaires et les polyno\(\hat{o}\)mes orthogonaux de Laguerre-Hahn. Université Pierre et Marie Curie, Paris, Thése de Doctorat (1988)

  20. Dini, J., Maroni, P., Ronveaux, A.: Sur une perturbation de la récurrence vérifiée par une suite de polynômes orthogonaux. Portugal. Math. 46(3), 269–282 (1989)

    MathSciNet  MATH  Google Scholar 

  21. Erb, W.: Optimally space localized polynomials with applications in signal processing. J. Fourier Anal. Appl. 18(1), 45–66 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Erb, W.: Accelerated Landweber methods based on co-dilated orthogonal polynomials. Numer. Algorithms 68(2), 229–260 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Foupouagnigni, M., Ronveaux, A.: Fourth-order difference equation satisfied by the co-recursive of \(q\)-classical orthogonal polynomials. J. Comput. Appl. Math. 133(1–2), 355–365 (2001)

    MathSciNet  MATH  Google Scholar 

  24. Foupouagnigni, M., Koepf, W., Ronveaux, A.: On fourth-order difference equations for orthogonal polynomials of a discrete variable: derivation, factorization and solutions. J. Difference Equ. Appl. 9(9), 777–804 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Ismail, M.E.H., Masson, D.R.: Generalized orthogonality and continued fractions. J. Approx. Theory 83(1), 1–40 (1995)

    MathSciNet  MATH  Google Scholar 

  26. Ismail, M.E.H., Sri Ranga, A.: \(R_{II}\) type recurrence, generalized eigenvalue problem and orthogonal polynomials on the unit circle. Linear Algebra Appl. 562, 63–90 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Jones, W.B., Njåstad, O., Thron, W.J.: Moment theory, orthogonal polynomials, quadrature, and continued fractions associated with the unit circle. Bull. London Math. Soc. 21(2), 113–152 (1989)

    MathSciNet  MATH  Google Scholar 

  28. Kar, P.P., Gochhayat, P.: Zeros of quasi-orthogonal \(q\)-Laguerre polynomials. J. Math. Anal. Appl. 506(1), Paper No. 125605 (2022)

    MathSciNet  MATH  Google Scholar 

  29. Kar, P.P., Jordaan, K., Gochhayat, P., Kenfack Nangho, M.: Quasi-orthogonality and zeros of some \( _2 \phi _2 \) and \( _3 \phi _2\) polynomials. J. Comput. Appl. Math. 377, 13 (2020)

    MathSciNet  MATH  Google Scholar 

  30. J.S. Kim and D. Stanton, Combinatorics of orthogonal polynomials of type \(R_I\), Ramanujan J., (2021)

  31. Leopold, E.: Perturbed recurrence relations. Numer. Algorithms 33(1–4), 357–366 (2003)

    MathSciNet  MATH  Google Scholar 

  32. Leopold, E.: Perturbed recurrence relations. II. The general case. Numer. Algorithms 44(4), 347–366 (2007)

    MathSciNet  MATH  Google Scholar 

  33. Leopold, E.: Perturbed recurrence relations. III. The general case–some new applications. Numer. Algorithms 48(4), 383–402 (2008)

    MathSciNet  MATH  Google Scholar 

  34. Liu, Y., Ren, C.: An optimal perturbation bound. Math. Methods Appl. Sci. 42(11), 3791–3798 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Liu, Y., Qi, X.: Optimality of singular vector perturbation under maximum norm. Math. Methods Appl. Sci. 43(8), 5010–5018 (2020)

    MathSciNet  MATH  Google Scholar 

  36. Marcellán, F., Dehesa, J.S., Ronveaux, A.: On orthogonal polynomials with perturbed recurrence relations. J. Comput. Appl. Math. 30(2), 203–212 (1990)

    MathSciNet  MATH  Google Scholar 

  37. Milne-Thomson, L.M.: The Calculus of Finite Differences. Macmillan and Co. Ltd., London (1951)

    MATH  Google Scholar 

  38. Peherstorfer, F.: Finite perturbations of orthogonal polynomials. J. Comput. Appl. Math. 44(3), 275–302 (1992)

    MathSciNet  MATH  Google Scholar 

  39. Rønning, F.: PC-fractions and Szegő polynomials associated with starlike univalent functions. Numer. Algorithms 3(1–4), 383–391 (1992)

    MathSciNet  MATH  Google Scholar 

  40. Ronveaux, A., Some \(4\)th order differential equations related to classical orthogonal polynomials, in Orthogonal polynomials and their applications (Spanish) (Vigo,: 159–169. Esc. Téc. Super. Ing. Ind, Vigo, Vigo (1988)

  41. Ronveaux, A., Belmehdi, S., Dini, J., Maroni, P.: Fourth-order differential equation for the co-modified of semi-classical orthogonal polynomials. J. Comput. Appl. Math. 29(2), 225–231 (1990)

    MathSciNet  MATH  Google Scholar 

  42. Saib, A.S., Zerouki, E.: On associated and co-recursive \(d\)-orthogonal polynomials. Math. Slovaca 63(5), 1037–1052 (2013)

    MathSciNet  MATH  Google Scholar 

  43. Shukla, V., Swaminathan, A.: Chain sequences and zeros of polynomials related to a perturbed \(R_{II}\) type recurrence relation. J. Comput. Appl. Math. 422, Paper No. 114916 (2023)

    MATH  Google Scholar 

  44. B. Simon, Orthogonal Polynomials on the Unit Circle. Part 1: Classical Theory, American Mathematical Society Colloquium Publications, 54, Part 1, American Mathematical Society, Providence, RI, 2005

  45. Slim, H.A.: On co-recursive orthogonal polynomials and their application to potential scattering. J. Math. Anal. Appl. 136(1), 1–19 (1988)

    MathSciNet  MATH  Google Scholar 

  46. Sri Ranga, A.: Szegő polynomials from hypergeometric functions. Proc. Am. Math. Soc. 138(12), 4259–4270 (2010)

    MATH  Google Scholar 

  47. Zhedanov, A.: Rational spectral transformations and orthogonal polynomials. J. Comput. Appl. Math. 85(1), 67–86 (1997)

Download references

Acknowledgements

The authors sincerely thank the anonymous referees for their constructive criticism, which helped to improve the manuscript. The first author would like to express his gratitude for the resources and support provided by Bennett University, Greater Noida, India, during the revision of this manuscript. This research work of the second author is supported by the Project No. CRG/2019/000200/MS of Science and Engineering Research Board, Department of Science and Technology, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Swaminathan.

Additional information

Communicated by Rosihan M. Ali.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, V., Swaminathan, A. Spectral Transformation Associated with a Perturbed \(R_I\) Type Recurrence Relation. Bull. Malays. Math. Sci. Soc. 46, 169 (2023). https://doi.org/10.1007/s40840-023-01561-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40840-023-01561-8

Keywords

Mathematics Subject Classification

Navigation