Skip to main content
Log in

The Stochastic Periodic Behavior of a Chemostat Model with Periodic Nutrient Input

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

In this paper, we study the stochastic periodic behavior of a chemostat model with periodic nutrient input. We first prove the existence of global unique positive solution with any initial value for stochastic non-autonomous periodic chemostat system. After that, the sufficient conditions are established for the existence of nontrivial positive \(T-\)periodic solution. Moreover, we also analyze the conditions for extinction exponentially of microorganism, and we find that there exists a unique boundary periodic solution for stochastic chemostat model, which is globally attractive. At the same time, in the end of this paper, we also give some numerical simulations to illustrate our main conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Monod, J.: La technique de la culture continue: theorie et applications. Annales de I’Institut Pasteur 79, 390–401 (1950)

    Google Scholar 

  2. Novick, A., Szilard, L.: Description of the chemostat. Science 112, 215–216 (1950)

    Google Scholar 

  3. Smith, H., Waltman, P.: The theory of the chemostat: dynamics of microbial competition. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  4. Butler, G., Wolkowicz, G.: A mathematical model of the chemostat with a general class of functions describing nutrient uptake. SIAM J. Appl. Math. 45, 138–151 (1985)

    MathSciNet  MATH  Google Scholar 

  5. Wolkowicz, G., Lu, Z.: Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates. SIAM J. Appl. Math. 52, 222–233 (1992)

    MathSciNet  MATH  Google Scholar 

  6. Li, B.: Global asymptotic behavior of the chemostat: general response functions and different removal rates. SIAM J. Appl. Math. 59, 411–422 (1998)

    MathSciNet  MATH  Google Scholar 

  7. Wang, L., Wolkowicz, G.: A delayed chemostat model with general nonmonotone response functions and differential removal rates. J. Math. Anal. Appl. 321, 452–468 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Sun, S., Chen, L.: Dynamic behaviors of Monod type chemostat model with impulsive perturbation on the nutrient concentration. J. Math. Chem. 42, 837–847 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Sun, S., Chen, L.: Complex dynamics of a chemostat with variable yields and periodically impulsive perturbation on the substrate. J. Math. Chem. 43, 338–349 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Smith, H.: Competitive coexistence in oscillating chemostat. SIAM J. Appl. Math. 40, 498–522 (1981)

    MathSciNet  MATH  Google Scholar 

  11. Hsu, S.: A mathematical analysis of competition for a single resource. University of Iowa, USA (1976)

    Google Scholar 

  12. Hsu, S.: A competition model for a seasonally fluctuating nutrient. J. Math. Biol. 9, 115–132 (1980)

    MathSciNet  MATH  Google Scholar 

  13. Hale, J., Somolinos, A.: Competition for fluctuating nutrient. J. Math. Biol. 18, 255–280 (1983)

    MathSciNet  MATH  Google Scholar 

  14. Sun, S., Sun, Y., Zhang, G., Liu, X.: Dynamical behavior of a stochastic two-species Monod competition chemostat model. Appl. Math. Comput. 298, 153–170 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Zhao, D., Yuan, S.: Critical result on the break-even concentration in a single-species stochastic chemostat model. J. Math. Anal. Appl. 434, 1336–1345 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Imhof, L., Walcher, S.: Exclusion and persistence in deterministic and stochastic chemostat models. J. Differ. Equ. 217, 26–53 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Xu, C., Yuan, S.: An analogue of break-even concentration in a simple stochastic chemostat model. Appl. Math. Lett. 48, 62–68 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Sun, S., Zhang, X.: A stochastic chemostat model with an inhibitor and noise independent of population sizes. Phys. A 492, 1763–1781 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Sun, S., Zhang, X.: Asymptotic behavior of a stochastic delayed chemostat model with nutrient storage. J. Biol. Syst. 26, 225–246 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Sun, S., Zhang, X.: Asymptotic behavior of a stochastic delayed chemostat model with nonmonotone uptake function. Phys. A 512, 38–56 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Zhang, X., Yuan, R.: The existence of stationary distribution of a stochastic delayed chemostat model. Appl. Math. Lett. 93, 15–21 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Campillo, F., Joannides, M., Valverde, I.: Stochastic modeling of the chemostat. Ecol. Model. 222, 2676–2689 (2011)

    Google Scholar 

  23. Crump, K., Young, W.: Some stochastic features of bacterial constant growth apparatus. Bull. Math. Biol. 41, 53–66 (1979)

    MathSciNet  MATH  Google Scholar 

  24. Grasman, J., Gee, M., Herwaarden, O.: Breakdown of a chemostat exposed to stochastic noise. J. Eng. Math. 53, 291–300 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Xu, C., Yuan, S.: Asymptotic behavior of a chemostat model with stochastic perturbation on the dilution rate. Abstr. Appl. Anal. 2013, 423154 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Wang, L., Jiang, D., Regan, D.: The periodic solutions of a stochastic chemostat model with periodic washout rate. Commun. Nonlinear Sci. Numer. Simulat. 37, 1–13 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Wang, L., Jiang, D.: Periodic solution for the stochastic chemostat with general response function. Phys. A 486, 378–385 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Zhao, D., Yuan, S.: Break-even concentration and periodic behavior of a stochastic chemostat model with seasonal fluctuation. Commun. Nonlinear Sci. Numer. Simulat. 46, 62–73 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Khasminskii, R.: Stochastic stability of differential equations. Springer, Berlin (2011)

    MATH  Google Scholar 

  30. Mao, X.: Stochastic differential equations and applications. Horwood Publishing, Chichester (1997)

    MATH  Google Scholar 

  31. Lipster, R.: A strong law of large numbers for local martingales. Stochastics 3, 217–228 (1980)

    MathSciNet  Google Scholar 

  32. Cao, B., Shan, M., Zhang, Q., Wang, W.: A stochastic SIS epidemic model with vaccination. Phys. A 486, 127–143 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Higham, D.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43, 525–546 (2001)

    MathSciNet  MATH  Google Scholar 

  34. Valenti, D., Magazzu, L., Caldara, P., Spagnolo, B.: Stabilization of quantum metastable states by dissipation. Phys. Rev. B 91, 235412 (2015)

    Google Scholar 

  35. Spagnolo, B., La Barbera, A.: Role of the noise on the transient dynamics of an ecosystem of interacting species. Phys. A 315, 114–124 (2002)

    MATH  Google Scholar 

  36. Mikhaylov, A., Guseinov, D., Belov, A., et al.: Stochastic resonance in a metal-oxide memristive device. Chaos, Solitons & Fractals 114, 110723 (2021)

    Google Scholar 

  37. Mantegna, R., Spagnolo, B.: Probability distribution of the residence times in periodically fluctuating metastable systems. Int. J. Bifurcat. Chaos Appl. Sci. Eng. 8(4), 783–790 (1988)

    MATH  Google Scholar 

  38. Agudov, N., Safonov, A., Krichigin, A., et al.: Nonstationary distributions and relaxation times in a stochastic model of memristor. J. Stat. Mech: Theory Exp. 2020, 024003 (2020)

    Google Scholar 

  39. Guarcello, C., Valenti, D., Carollo, A., Spagnolo, B.: Stabilization effects of dichotomous noise on the lifetime of the superconducting state in a long Josephson junction. Entropy 17, 2862–2875 (2015)

    Google Scholar 

  40. Zu, L., Jiang, D., O’Regan, D., Hayat, T.: Dynamic analysis of a stochastic toxin-mediated predator-prey model in aquatic environments. J. Math. Anal. Appl. 504(2), 125424 (2021)

    MathSciNet  MATH  Google Scholar 

  41. Guarcello, C., Valenti, D., Spagnolo, B.: Phase dynamics in graphene-based Josephson junctions in the presence of thermal and correlated fluctuations. Phys. Rev. B 92, 174519 (2015)

    Google Scholar 

  42. Guarcello, C., Valenti, D., Spagnolo, B., Pierro, V., Filatrella, G.: Anomalous transport effects on switching currents of graphene-based Josephson junctions. Nanotechnology 28, 134001 (2017)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 12171039) and the Fundamental Research Funds for the Central Universities (No. 2021NTST03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by See Keong Lee.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Yuan, R. The Stochastic Periodic Behavior of a Chemostat Model with Periodic Nutrient Input. Bull. Malays. Math. Sci. Soc. 46, 165 (2023). https://doi.org/10.1007/s40840-023-01557-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40840-023-01557-4

Keywords

Mathematics Subject Classification

Navigation