Skip to main content
Log in

Hardy Type Spaces and Bergman Type Classes of Complex-Valued Harmonic Functions

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

The main purpose of this paper is to discuss Hardy type spaces and Bergman type classes of complex-valued harmonic functions. We first establish a Hardy-Littlewood type theorem on complex-valued harmonic functions. Next, the relationships between the Bergman type classes and the Hardy type spaces of complex-valued harmonic functions or the relationships between the Bergman type classes and the Hardy type spaces of harmonic \((K,K')\)-elliptic mappings will be discussed, where \(K\ge 1\) and \(K'\ge 0\) are constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Our manuscript has no associated data.

References

  1. Chen, S.L., Hamada, H., Zhu, J.-F.: Composition operators on Bloch and Hardy type spaces. Math. Z. 301, 3939–3957 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, S.L., Kalaj, D.: On asymptotically sharp bi-Lipschitz inequalities of quasiconformal mappings satisfying inhomogeneous polyharmonic equations. J. Geom. Anal. 31, 4865–4905 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, S.L., Li, P., Wang, X.T.: Schwarz-type lemma, Landau-type theorem, and Lipschitz-type space of solutions to inhomogeneous biharmonic equations. J. Geom. Anal. 29, 2469–2491 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, S.L., Ponnusamy, S.: On certain quasiconformal and elliptic mappings. J. Math. Anal. Appl. 486, 1–16 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, S.L., Ponnusamy, S., Rasila, A.: On characterizations of Bloch-type, Hardy-type, and Lipschitz-type spaces. Math. Z. 279, 163–183 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, S.L., Ponnusamy, S., Wang, X.: The isoperimetric type and Fejer-Riesz type inequalities for pluriharmonic mappings (in Chinese). Sci. Sin. Math. 44, 127–138 (2014)

    Article  MATH  Google Scholar 

  7. Chen, S.L., Ponnusamy, S., Wang, X.: Remarks on ‘Norm estimates of the partial derivatives for harmonic mappings and harmonic quasiregular mappings’. J. Geom. Anal. 31, 11051–11060 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Clunie, J.G., Sheil-Small, T.: Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A I Math. 9, 3–25 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Duren, P.: Theory of \(H^{p}\) spaces, 2nd edn. Dover, Mineola (2000)

    Google Scholar 

  10. Duren, P.: Harmonic mappings in the plane. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  11. Eenigenburg, P.J.: The integral means of analytic functions. Quart. J. Math. Oxford. 32, 313–322 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fefferman, C., Stein, E.M.: \(H^{p}\) spaces of several variables. Acta Math. 129, 137–193 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  13. Finn, R., Serrin, J.: On the Hölder continuity of quasiconformal and elliptic mappings. Trans. Amer. Math. Soc. 89, 1–15 (1958)

    MathSciNet  MATH  Google Scholar 

  14. Girela, D.: Mean growth of the derivative of certain classes of analytic functions. Math. Proc. Camb. Phil. Soc. 112, 335–342 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hardy, G.H., Littlewood, J.E.: Some properties of conjugate functions. J. Reine Angew. Math. 167, 405–423 (1931)

    MathSciNet  MATH  Google Scholar 

  16. Holland, F., Twomey, J.B.: On Hardy classes and the area function. J. London Math. Soc. 17, 257–283 (1978)

    MathSciNet  MATH  Google Scholar 

  17. Kalaj, D.: On Riesz type inequalities for harmonic mappings on the unit disk. Trans. Am. Math. Soc. 372, 4031–4051 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kayumov, I., Ponnusamy, S., Kaliraj, A.: Riesz-Fejćr inequalities for harmonic functions. Potential Anal. 52, 105–113 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kovalev, L.V., Yang, X.R.: Near-isometric duality of Hardy norms with applications to harmonic mappings. J. Math. Anal. Appl. 487(124040), 13 (2020)

    MathSciNet  MATH  Google Scholar 

  20. Lewy, H.: On the non-vanishing of the Jacobian in certain one-to-one mappings. Bull. Amer. Math. Soc. 42, 689–692 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  21. Littlewood, J.E., Paley, R.E.A.C.: Theorems on Fourier series and power series (II). Proc. London Math. Soc. 42, 52–89 (1936)

    MathSciNet  MATH  Google Scholar 

  22. Melentijević, P., Božin, V.: Sharp Riesz-Fejér inequality for harmonic Hardy spaces. Potent. Anal. 54, 575–580 (2021)

    Article  MATH  Google Scholar 

  23. Nirenberg, L.: On nonlinear elliptic partial differential equations and Hölder continuity. Commun. Pure Appl. Math. 6, 103–156 (1953)

    Article  MATH  Google Scholar 

  24. Pavlović, M.: Green’s formula and the Hardy-Stein identities. Filomat 23, 135–153 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Pavlović, Function classes on the unit disc. An introduction. 2nd revised and extended edition. (English) De Gruyter Studies in Mathematics 52. Berlin: De Gruyter. xv, 553 p. (2019)

  26. Pichorides, S.K.: On the best values of the constants in the theorems of M. Riesz, Zygmund and Kolmogorov. Studia Math. 44, 165–179 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shapiro, J.H.: The essential norm of a composition operator. Ann. Math. 125, 375–404 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. I. E. Verbitsky, Estimate of the norm of a function in a Hardy space in terms of the norms of its real and imaginary parts, Mat. Issled. 54 (1980), 16–20 (Russian); Amer. Math. Soc. Transl. Ser. 124 (1984), 11–12 (English translation)

  29. Zhu, J.-F.: Norm estimates of the partial derivatives for harmonic mappings and harmonic quasiregular mappings. J. Geom. Anal. 31, 5505–5525 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhu, K.: Operator theory in function spaces. Marcel Dekker, New York (1990)

    MATH  Google Scholar 

  31. Zhu, K.: Spaces of holomorphic functions in the unit ball. Springer, New York (2005)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for many valuable suggestions. The research of the first author was partly supported by the National Science Foundation of China (Grant No. 12071116), the Hunan Provincial Natural Science Foundation of China (No. 2022JJ10001), the Key Projects of Hunan Provincial Department of Education (Grant No. 21A0429), the Double First-Class University Project of Hunan Province (Xiangjiaotong [2018]469), the Science and Technology Plan Project of Hunan Province (2016TP1020), and the Discipline Special Research Projects of Hengyang Normal University (XKZX21002); The research of the second author was partly supported by JSPS KAKENHI Grant No. JP22K03363.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaolin Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Rosihan M. Ali.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Hamada, H. Hardy Type Spaces and Bergman Type Classes of Complex-Valued Harmonic Functions. Bull. Malays. Math. Sci. Soc. 46, 138 (2023). https://doi.org/10.1007/s40840-023-01540-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40840-023-01540-z

Keywords

Mathematics Subject Classification

Navigation