1 Introduction

Let \({\mathcal {H}}\) be the class of analytic functions in \(\mathbb {D}:= \left\{ z \in \mathbb {C}: |z|<1 \right\} \) of the form

$$\begin{aligned} f(z) = \sum _{n=1}^{\infty }a_{n}z^{n},\quad z\in \mathbb {D}, \end{aligned}$$
(1.1)

and \({\mathcal {A}}\) be its subclass of all f normalized by \(f'(0)=1.\) By \(\mathcal {S}\) we denote the subclass of \({\mathcal {A}}\) of univalent functions.

For \(f\in \mathcal {S}\) let

$$\begin{aligned} F_f(z):=\log \frac{f(z)}{z}=2\sum _{n=1}^\infty \gamma _n(f) z^n,\quad z\in \mathbb {D},\; \log 1:=0. \end{aligned}$$
(1.2)

The numbers \(\gamma _n:=\gamma _n(f)\) are called logarithmic coefficients of f. It is well known that the logarithmic coefficients play a crucial role in Milin conjecture ([16], see also [8, p. 155]). It is surprising that for the whole class \(\mathcal {S}\) the sharp estimates of single logarithmic coefficients are known only for \(\gamma _1\) and \(\gamma _2,\) namely

$$\begin{aligned} |\gamma _1|\le 1,\quad |\gamma _2|\le \frac{1}{2}+\frac{1}{\mathrm {e}^2}=0.635\dots \end{aligned}$$

and are unknown for \(n\ge 3.\) Logarithmic coefficients is one of the topic recently being of the research interest by various authors (e.g., [1, 2, 6, 9, 13, 20]).

For \(q,n \in \mathbb {N},\) the Hankel determinant \(H_{q,n}(f)\) of \(f\in {\mathcal {A}}\) of form (1.1) is defined as

$$\begin{aligned} H_{q,n}(f) := \begin{vmatrix} a_{n}&a_{n+1}&\cdots&a_{n+q-1} \\ a_{n+1}&a_{n+2}&\cdots&a_{n+q} \\ \vdots&\vdots&\vdots&\vdots \\ a_{n+q-1}&a_{n+q}&\cdots&a_{n+2(q-1)} \end{vmatrix}. \end{aligned}$$

Recently, many authors examined the second and the third Hankel determinants \(H_{2,2}(f)\) and \(H_{3,1}(f)\) over selected subclasses of \({\mathcal {A}},\) particularly of \(\mathcal {S}\) (see e.g., [4, 11] for further references).

Based on the ideas mentioned above, in [12] was begun the research study of the Hankel determinant \(H_{q,n}(F_f/2)\) which entries are logarithmic coefficients of f,  i.e.,

$$\begin{aligned} H_{q,n}(F_f/2) = \begin{vmatrix} \gamma _{n}&\gamma _{n+1}&\cdots&\gamma _{n+q-1} \\ \gamma _{n+1}&\gamma _{n+2}&\cdots&\gamma _{n+q} \\ \vdots&\vdots&\vdots&\vdots \\ \gamma _{n+q-1}&\gamma _{n+q}&\cdots&\gamma _{n+2(q-1)} \end{vmatrix}. \end{aligned}$$

Due to the great importance of logarithmic coefficients, the proposed topic seems reasonable and interesting. The results which can be obtained on Hankel determinants \(H_{q,n}(F_f/2)\) broaden the knowledge of logarithmic coefficients. In this paper, we continue this research dealing with \(H_{2,1}(F_f/2)=\gamma _1\gamma _3-\gamma _2^2\) for the classes of starlike and convex functions of order \(\alpha .\) Recall that \(H_{2,1}(F_f/2)\) corresponds to the well-known functional \(H_{2,1}(f)=a_3-a_2^2\) over the class \(\mathcal {S}\) or its subclasses. For the class \({\mathcal {S}}\) the functional \(H_{2,1}(f)\) was estimated in 1916 by Bieberbach (see e.g., [10, Vol. I, p. 35]).

Differentiating (1.2) and using (1.1) we get

$$\begin{aligned} \gamma _{1}=\frac{1}{2}a_{2},\quad \gamma _{2}=\frac{1}{2}\left( a_{3}-\frac{1}{2}a_{2}^{2}\right) ,\quad \gamma _{3}=\frac{1}{2}\left( a_{4}-a_{2}a_{3}+\frac{1}{3}a_{2}^{3}\right) . \end{aligned}$$
(1.3)

Therefore,

$$\begin{aligned} H_{2,1}(F_f/2)=\gamma _1\gamma _3-\gamma _2^2=\frac{1}{4}\left( a_2a_4-a_3^2+\frac{1}{12}a_2^4\right) . \end{aligned}$$
(1.4)

Observe that when \(f\in \mathcal {S},\) then for \(f_\theta (z):=\mathrm {e}^{-\mathrm {i}\theta }f(\mathrm {e}^{\mathrm {i}\theta }z),\ \theta \in \mathbb {R},\)

$$\begin{aligned} H_{2,1}(F_{f_\theta }/2)=\frac{\mathrm {e}^{4\mathrm {i}\theta }}{4}\left( a_2a_4-a_3^2+\frac{1}{12}a_2^4\right) =\mathrm {e}^{4\mathrm {i}\theta }H_{2,1}(F_f/2). \end{aligned}$$
(1.5)

The main goal of this paper is to find sharp upper bounds for \(H_{2,1}(F_f/2)\) in case when f is a starlike or convex function of order \(\alpha .\) Given \(\alpha \in [0,1),\) a function \(f\in {\mathcal {A}}\) is called starlike of order \(\alpha \) if

$$\begin{aligned} {{\,\mathrm{Re}\,}}\frac{zf'(z)}{f(z)}>\alpha ,\quad z\in \mathbb {D}. \end{aligned}$$
(1.6)

Further, a function \(f\in {\mathcal {A}}\) is called convex of order \(\alpha \) if

$$\begin{aligned} {{\,\mathrm{Re}\,}}\left\{ 1+\frac{zf''(z)}{f'(z)}\right\} >\alpha ,\quad z\in \mathbb {D}. \end{aligned}$$
(1.7)

Both classes usually denoted as \(\mathcal {S}^*(\alpha )\) and \(\mathcal {S}^c(\alpha ),\) respectively, were introduced by Robertson [19] (e.g., [10, Vol. I, p. 138]). The classes \(\mathcal {S}^*(0)=:\mathcal {S}^*\) and \(\mathcal {S}^c(0)=:\mathcal {S}^c\) consist of starlike and convex functions, respectively. Let us mention that in the class \(\mathcal {S}^*(\alpha ),\) \(|\gamma _n|\le (1-\alpha )/n\) and in the class \(\mathcal {S}^c(\alpha ),\) \(|\gamma _n|\le (1-\eta (\alpha ))/n\) for \(n\in \mathbb {N},\) with sharpness (cf. [21, p. 263]), where

$$\begin{aligned} \eta (\alpha ):={\left\{ \begin{array}{ll} \dfrac{1-2\alpha }{4^{1-\alpha }(1-2^{2\alpha -1})},&{} \alpha \not =1/2,\\ \dfrac{1}{2\log 2},&{} \alpha =1/2. \end{array}\right. } \end{aligned}$$

In particular, for \(n\in {\mathbb {N}},\) \(|\gamma _n|\le 1/n\) in the class \(\mathcal {S}^*\) of starlike functions and \(|\gamma _n|\le 1/(2n)\) in the class of convex functions.

In view of (1.6) and (1.7) both classes \({\mathcal {S}}^*(\alpha )\) and \({\mathcal {S}}^c(\alpha )\) have a representation with using the Carathéodory class \({\mathcal {P}}\), i.e., the class of analytic functions p in \(\mathbb {D}\) of the form

$$\begin{aligned} p(z) = 1 + \sum _{n=1}^{\infty }c_{n}z^{n}, \quad z\in \mathbb {D}, \end{aligned}$$
(1.8)

having a positive real part in \(\mathbb {D}.\) Therefore, the coefficients of functions in \({\mathcal {S}}^*(\alpha )\) and \({\mathcal {S}}^c(\alpha )\) have a suitable representation expressed by coefficients of functions in \({\mathcal {P}}.\) Thus, to get the upper bound of \(H_{2,1}(F_f/2),\) we based our computing on the well-known formulas on coefficient \(c_2\) (e.g., [18, p. 166]) and the formula \(c_3\) due to Libera and Zlotkiewicz [14, 15]; cf. [17, Proposition 6]. Further remarks related to extremal functions see [5].

Let \(\mathbb {T}:=\{z\in \mathbb {C}:|z|=1\}.\)

Lemma 1.1

If \(p \in {{\mathcal {P}}}\) is of form (1.6) with \(c_1\ge 0,\) then

$$\begin{aligned} c_1&=2\zeta _1,\end{aligned}$$
(1.9)
$$\begin{aligned} c_2&=2\zeta _1^2+2(1-\zeta _1^2)\zeta _2 \end{aligned}$$
(1.10)

and

$$\begin{aligned} c_3=2\zeta _1^3+4(1-\zeta _1^2)\zeta _1\zeta _2-2(1-\zeta _1^2)\zeta _1\zeta _2^2+2(1-\zeta _1^2)(1-|\zeta _2|^2)\zeta _3 \end{aligned}$$
(1.11)

for some \(\zeta _1\in [0,1]\) and \(\zeta _2,\zeta _3\in \overline{\mathbb {D}}:=\{z\in \mathbb {C}:|z|<1\}.\)

For \(\zeta _1\in \mathbb {D}\) and \(\zeta _2\in \mathbb {T},\) there is a unique function \(p\in {\mathcal {P}}\) with \(c_1\) and \(c_2\) as in (1.9)–(1.10), namely

$$\begin{aligned} p(z)=\frac{1+\left( \overline{\zeta _1}\zeta _2+\zeta _1\right) z+\zeta _2z^2}{1+\left( \overline{\zeta _1}\zeta _2-\zeta _1\right) z-\zeta _2z^2},\quad z\in \mathbb {D}. \end{aligned}$$
(1.12)

We will also apply the following lemma.

Lemma 1.2

(Choi et al. [7]) Given real numbers \(A,\ B, C,\) let

$$\begin{aligned} Y(A,B,C) := \max \left\{ |A+Bz+Cz^2|+1-|z|^2: z\in \overline{{\mathbb {D}}}\right\} . \end{aligned}$$
  1. I.

    If \(AC\ge 0,\) then

    $$\begin{aligned} Y(A,B,C)=\left\{ \begin{array}{ll} |A|+|B|+|C|, &{}\quad |B|\ge 2(1-|C|),\\ 1+|A|+\dfrac{B^2}{4(1-|C|)}, &{}\quad |B|<2(1-|C|). \end{array} \right. \end{aligned}$$
  2. II.

    If \(AC<0,\) then

    $$\begin{aligned} \begin{aligned}&Y(A,B,C)\\&=\left\{ \begin{array}{lll} 1-|A|+\dfrac{B^2}{4(1-|C|)}, &{} -4AC(C^{-2}-1)\le B^2 \wedge |B|<2(1-|C|), \\ 1+|A|+\dfrac{B^2}{4(1+|C|)}, &{} B^2<\min \left\{ 4(1+|C|)^2,-4AC(C^{-2}-1)\right\} , \\ R(A,B,C), &{} \mathrm{otherwise} , \end{array} \right. \end{aligned} \end{aligned}$$

    where

    $$\begin{aligned} R(A,B,C):=\left\{ \begin{array}{lll} |A|+|B|-|C|, &{} |C|(|B|+4|A|)\le |AB|, \\ -|A|+|B|+|C|, &{} |AB|\le |C|(|B|-4|A|), \\ (|C|+|A|)\sqrt{1-\dfrac{B^2}{4AC}}, &{} \mathrm{otherwise}. \end{array} \right. \end{aligned}$$

2 Starlike functions of order \(\alpha \)

We now discuss \(H_{2,1}(F_f/2)\) for the class \(\mathcal {S}^*(\alpha ).\)

Theorem 2.1

Let \(\alpha \in [0,1).\) If \(f\in \mathcal {S}^*(\alpha ),\) then

$$\begin{aligned} |\gamma _1\gamma _3-\gamma _2^2|\le \frac{1}{4}(1-\alpha )^2. \end{aligned}$$
(2.1)

The inequality is sharp.

Proof

Fix \(\alpha \in [0,1)\) and let \(f \in {\mathcal {S}}^*(\alpha )\) be of form (1.1). Then, by (1.6),

$$\begin{aligned} zf'(z)=((1-\alpha )p(z)+\alpha )f(z),\quad z\in \mathbb {D}, \end{aligned}$$
(2.2)

for some \(p \in {\mathcal {P}}\) of form (1.8). Since the class \({\mathcal {P}}\) is invariant under the rotations and (1.5) holds, we may assume that \(c_1 \in [0,2]\) ([3], see also [10, Vol. I, p. 80, Theorem 3]), i.e., in view of (1.9) that \(\zeta _1\in [0,1].\) Substituting series (1.1) and (1.8) into (2.2) and equating coefficients we get

$$\begin{aligned} \begin{aligned}&a_2 =(1-\alpha )c_1, \quad a_3=\frac{1}{2}(1-\alpha )\left( c_2+(1-\alpha )c_1^2\right) ,\\&a_4 = \frac{1}{6}(1-\alpha )\left[ 2c_3+3(1-\alpha )c_1c_2+(1-\alpha )^2c_1^3\right] . \end{aligned} \end{aligned}$$

Hence by using (1.4) and (1.9)–(1.11) we obtain

$$\begin{aligned} \begin{aligned} \gamma _1\gamma _3-\gamma _2^2&=\frac{1}{4}\left( a_2a_4-a_3^2+\frac{1}{12}a_2^4\right) =\frac{1}{48}(1-\alpha )^2\left( 4c_1c_3-3c_2^2\right) \\&=\frac{(1-\alpha )^2}{12}\left[ \zeta _1^4+2(1-\zeta _1^2)\zeta _1^2\zeta _2-(1-\zeta _1^2)(3+\zeta _1^2)\zeta _2^2\right. \\&\quad + \left. 4(1-\zeta _1^2)(1-|\zeta _2|^2)\zeta _1\zeta _3\right] . \end{aligned} \end{aligned}$$
(2.3)
  1. A.

    Suppose that \(\zeta _1=1.\) Then, by (2.3),

    $$\begin{aligned} |\gamma _1\gamma _3-\gamma _2^2|=\frac{1}{12}(1-\alpha )^2. \end{aligned}$$
  2. B.

    Suppose that \(\zeta _1=0.\) Then, by (2.3),

    $$\begin{aligned} |\gamma _1\gamma _3-\gamma _2^2|=\frac{1}{4}(1-\alpha )^2|\zeta _2|^2\le \frac{1}{4}(1-\alpha )^2. \end{aligned}$$
  3. C.

    Suppose that \(\zeta _1\in (0,1).\) By the fact that \(|\zeta _3|\le 1\) from (2.3) we obtain

    $$\begin{aligned} \begin{aligned} |\gamma _1\gamma _3-\gamma _2^2|&\le \frac{(1-\alpha )^2}{12}\left[ \left| \zeta _1^4 +2(1-\zeta _1^2)\zeta _1^2\zeta _2-(1-\zeta _1^2)(3+\zeta _1^2)\zeta _2^2\right| \right. \\&\quad + \left. 4(1-\zeta _1^2)(1-|\zeta _2|^2)\zeta _1\right] \\&=\frac{1}{3}(1-\alpha )^2\zeta _1(1-\zeta _1^2)\left[ |A+B\zeta _2+C\zeta _2^2|+1-|\zeta _2|^2\right] , \end{aligned}\nonumber \\ \end{aligned}$$
    (2.4)

    where

    $$\begin{aligned} A:=\frac{\zeta _1^3}{4(1-\zeta _1^2)},\quad B:=\frac{1}{2}\zeta _1,\quad C:=-\frac{3+\zeta _1^2}{4\zeta _1}. \end{aligned}$$

    Since \(AC<0,\) we apply Lemma 1.2 only for the case II.

    1. C1.

      Note that the inequality

      $$\begin{aligned} -4AC\left( \frac{1}{C^2}-1\right) -B^2=\frac{(3+\zeta _1^2)\zeta _1^2}{4(1-\zeta _1^2)}\left( \frac{16\zeta _1^2}{(3+\zeta _1^2)^2}-1\right) -\frac{1}{4}\zeta _1^2\le 0 \end{aligned}$$

      is equivalent to \(-9(1-\zeta _1^2)\le 3(1-\zeta _1^2),\) which evidently holds for \(\zeta _1\in (0,1).\) Moreover, the inequality \(|B|<2(1-|C|)\) is equivalent to \(2\zeta _1^2-4\zeta _1+3<0,\) which is false for \(\zeta _1\in (0,1).\)

    2. C2.

      Since

      $$\begin{aligned} 4(1+|C|)^2=4\frac{(\zeta _1^2+4\zeta _1+3)^2}{16\zeta _1^2}>0,\quad -4AC\left( \frac{1}{C^2}-1\right) =-\frac{\zeta _1^2(9-\zeta _1^2)}{4(3+\zeta _1^2)}<0, \end{aligned}$$

      we see that the inequality

      $$\begin{aligned} \frac{\zeta _1^2}{4}=B^2<\min \left\{ 4(1+|C|)^2,-4AC\left( \frac{1}{C^2}-1\right) \right\} =-\frac{\zeta _1^2(9-\zeta _1^2)}{4(3+\zeta _1^2)} \end{aligned}$$

      is false for \(\zeta _1\in (0,1).\)

    3. C3.

      Observe that the inequality

      $$\begin{aligned} |C|(|B|+4|A|)-|AB|=\frac{3+\zeta _1^2}{4\zeta _1}\left( \frac{1}{2}\zeta _1+\frac{\zeta _1^3}{1-\zeta _1^2}\right) -\frac{\zeta _1^4}{8(1-\zeta _1^2)}\le 0 \end{aligned}$$

      is equivalent to \(3+4\zeta _1^2\le 0,\) which is false for \(\zeta _1\in (0,1).\)

    4. C4.

      Note that the inequality

      $$\begin{aligned} |AB|-|C|(|B|-4|A|)=\frac{\zeta _1^4}{8(1-\zeta _1^2)}-\frac{3+\zeta _1^2}{4\zeta _1}\left( \frac{1}{2}\zeta _1-\frac{\zeta _1^3}{1-\zeta _1^2}\right) \le 0 \end{aligned}$$

      is equivalent to \(4\zeta _1^4+8\zeta _1^2-3\le 0,\) which is true for \(0< \zeta _1\le \zeta ':=\sqrt{\sqrt{7}/2-1}\approx 0.5682.\) Then, by (2.3) and Lemma 1.2,

      $$\begin{aligned} \begin{aligned} |\gamma _1\gamma _3-\gamma _2^2|&\le \frac{1}{3}(1-\alpha )^2\zeta _1(1-\zeta _1^2)(-|A|+|B|+|C|)\\&=\frac{1}{12}(1-\alpha )^2(3-4\zeta _1^4)\le \frac{1}{4}(1-\alpha )^2, \end{aligned} \end{aligned}$$
      (2.5)

      for \(0<\zeta _1\le \zeta '.\)

    5. C5.

      It remains to consider the last case in Lemma 1.2, which taking into account C4 holds for \(\zeta '<\zeta _1<1.\) Then, by (2.3),

      $$\begin{aligned} |\gamma _1\gamma _3-\gamma _2^2|&\le \frac{1}{3}(1-\alpha )^2\zeta _1(1-\zeta _1^2)(|C|+|A|)\sqrt{1-\dfrac{B^2}{4AC}}\nonumber \\&=(1-\alpha )^2\psi (\zeta _1)\le (1-\alpha )^2\psi (\zeta ')=(1-\alpha )^2\frac{5-\sqrt{7}}{3\sqrt{8+2\sqrt{7}}}, \end{aligned}$$
      (2.6)

      where

      $$\begin{aligned} \psi (t):=\frac{3-2t^2}{6\sqrt{3+t^2}},\quad \zeta '\le t\le 1. \end{aligned}$$

      Indeed, to see that the last inequality in (2.6) is true, observe that since

      $$\begin{aligned} \psi '(t)=-\frac{15t+2t^3}{6(3+t^2)^{3/2}}<0,\quad \zeta '< t<1, \end{aligned}$$

      the function \(\psi \) decrease which yields \(\psi (t)\le \psi (\zeta ')\approx 0.21525\) for \(\zeta '< t<1.\)

  4. D.

    Summarizing from parts A–C it follows inequality (2.1). Equality holds for the function \(f\in {\mathcal {A}}\) given by

    $$\begin{aligned} \frac{zf'(z)}{f(z)}=\frac{1+(1-2\alpha )z^2}{1-z^2},\quad z\in \mathbb {D}, \end{aligned}$$

    for which \(a_2=a_4=0\) and \(a_3=1-\alpha .\) \(\square \)

For \(\alpha =0\) we get the estimate for the class \(\mathcal {S}^*\) of starlike functions [12].

Corollary 2.2

If \(f\in \mathcal {S}^*,\) then

$$\begin{aligned} |\gamma _1\gamma _3-\gamma _2^2|\le \frac{1}{4}. \end{aligned}$$

The inequality is sharp.

3 Convex functions of order \(\alpha \)

Now we deal with \(H_{2,1}(F_f/2)\) for the class \({\mathcal {S}}^c(\alpha ).\)

Theorem 3.1

Let \(\alpha \in [0,1).\) If \(f\in \mathcal {S}^c(\alpha ),\) then

$$\begin{aligned} |\gamma _1\gamma _3-\gamma _2^2|\le \frac{(1-\alpha )^2(\alpha ^2+4\alpha -16)}{48(\alpha ^2+2\alpha -11)}. \end{aligned}$$
(3.1)

The inequality is sharp.

Proof

Fix \(\alpha \in [0,1)\) and let \(f \in {\mathcal {S}}^c(\alpha )\) be of form (1.1). Then, by (1.7),

$$\begin{aligned} f'(z)+zf''(z)=((1-\alpha )p(z)+\alpha )f'(z),\quad z\in \mathbb {D}, \end{aligned}$$
(3.2)

for some \(p \in {\mathcal {P}}\) of form (1.8). As in the proof of Theorem 2.1 we may assume that \(c_1 \in [0,2],\) i.e., in view of (1.9) that \(\zeta _1\in [0,1].\) Substituting series (1.1) and (1.8) into (3.2) and equating coefficients we get

$$\begin{aligned} \begin{aligned}&a_2= \frac{1}{2}(1-\alpha )c_1, \quad a_3=\frac{1}{6}(1-\alpha )\left( c_2+(1-\alpha )c_1^2\right) ,\\&a_4 = \frac{1}{24}(1-\alpha )\left[ 2c_3+3(1-\alpha )c_1c_2+(1-\alpha )^2c_1^3\right] . \end{aligned} \end{aligned}$$

Hence by using (1.4) and (1.9)–(1.11) we obtain

$$\begin{aligned} \begin{aligned} \gamma _1\gamma _3-\gamma _2^2&=\frac{(1-\alpha )^2}{2304}\left[ -(1-\alpha )^2c_1^4+4(1-\alpha )c_1^2c_2+24c_1c_3-16c_2^2\right] \\&=\frac{(1-\alpha )^2}{144}\left[ (3-\alpha ^2)\zeta _1^4+(6-2\alpha )(1-\zeta _1^2)\zeta _1^2\zeta _2\right. \\&\quad - \left. 2(1-\zeta _1^2)(2+\zeta _1^2)\zeta _2^2+6(1-\zeta _1^2)(1-|\zeta _2|^2)\zeta _1\zeta _3\right] . \end{aligned} \end{aligned}$$
(3.3)
  1. A.

    Suppose that \(\zeta _1=1.\) Then, by (3.3),

    $$\begin{aligned} |\gamma _1\gamma _3-\gamma _2^2|=\frac{1}{144}(1-\alpha )^2(3-\alpha ^2). \end{aligned}$$
  2. B.

    Suppose that \(\zeta _1=0.\) Then, by (3.3),

    $$\begin{aligned} |\gamma _1\gamma _3-\gamma _2^2|=\frac{1}{36}(1-\alpha )^2|\zeta _2|^2\le \frac{1}{36}(1-\alpha )^2. \end{aligned}$$
  3. C.

    Suppose that \(\zeta _1\in (0,1).\) By the fact that \(|\zeta _3|\le 1\) from (3.3) we obtain

    $$\begin{aligned} \begin{aligned}&|\gamma _1\gamma _3-\gamma _2^2|\\&\quad \le \frac{(1-\alpha )^2}{144}\left[ \left| (3-\alpha ^2)\zeta _1^4+(6-2\alpha )(1-\zeta _1^2)\zeta _1^2\zeta _2-2(1-\zeta _1^2)(2+\zeta _1^2)\zeta _2^2\right| \right. \\&\qquad + \left. 6(1-\zeta _1^2)(1-|\zeta _2|^2)\zeta _1\right] \\&\quad =\frac{1}{24}(1-\alpha )^2\zeta _1(1-\zeta _1^2)\left[ |A+B\zeta _2+C\zeta _2^2|+1-|\zeta _2|^2\right] , \end{aligned} \end{aligned}$$
    (3.4)

    where

    $$\begin{aligned} A:=\frac{(3-\alpha ^2)\zeta _1^3}{6(1-\zeta _1^2)},\quad B:=\frac{3-\alpha }{3}\zeta _1,\quad C:=-\frac{2+\zeta _1^2}{3\zeta _1}. \end{aligned}$$

    Since \(AC<0,\) we apply Lemma 1.2 only for the case II.

    1. C1.

      Note that the inequality

      $$\begin{aligned} \begin{aligned}&-4AC\left( \frac{1}{C^2}-1\right) -B^2\\&\quad =\frac{2(3-\alpha ^2)(2+\zeta _1^2)\zeta _1^2}{9(1-\zeta _1^2)}\left( \frac{9\zeta _1^2}{(2+\zeta _1^2)^2}-1\right) -\frac{(3-\alpha )^2}{9}\zeta _1^2\le 0 \end{aligned} \end{aligned}$$

      is equivalent to \(-2(3-\alpha ^2)(4-\zeta _1^2)\le (3-\alpha )^2(2+\zeta _1^2),\) which holds for \(\zeta _1\in (0,1).\) Moreover, the inequality \(|B|<2(1-|C|)\) is equivalent to \((3-\alpha )\zeta _1^2\le -2(1-\zeta _1)(2-\zeta _1),\) which is false for \(\zeta _1\in (0,1).\)

    2. C2.

      Since

      $$\begin{aligned} 4(1+|C|)^2=4\frac{(\zeta _1^2+3\zeta _1+2)^2}{9\zeta _1^2}>0 \end{aligned}$$

      and

      $$\begin{aligned} -4AC\left( \frac{1}{C^2}-1\right) =-\frac{2(3-\alpha ^2)\zeta _1^2(4-\zeta _1^2)}{3(2+\zeta _1^2)}<0, \end{aligned}$$

      we see that the inequality

      $$\begin{aligned} \begin{aligned} \frac{1}{9}(3-\alpha )^2\zeta _1^2=B^2&<\min \left\{ 4(1+|C|)^2,-4AC\left( \frac{1}{C^2}-1\right) \right\} \\&=-\frac{2(3-\alpha ^2)\zeta _1^2(4-\zeta _1^2)}{9(2+\zeta _1^2)} \end{aligned} \end{aligned}$$

      is false for \(\zeta _1\in (0,1).\)

    3. C3.

      Observe that the inequality

      $$\begin{aligned} \begin{aligned}&|C|(|B|+4|A|)-|AB|\\&\quad =\frac{2+\zeta _1^2}{3\zeta _1}\left( \frac{3-\alpha }{3}\zeta _1+\frac{2(3-\alpha ^2)\zeta _1^3}{3(1-\zeta _1^2)}\right) -\frac{(3-\alpha ^2)(3-\alpha )\zeta _1^4}{18(1-\zeta _1^2)}\le 0 \end{aligned} \end{aligned}$$

      is equivalent to

      $$\begin{aligned} (1-\alpha )^2(\alpha +3)t^2+2(4\alpha ^2-\alpha -9)t-4(3-\alpha )\ge 0, \end{aligned}$$
      (3.5)

      where \(t:=\zeta _1^2\in (0,1).\) Note that \(\Delta :=4\left( 12\alpha ^4-39\alpha ^2-54\alpha +117\right) >0\) for \(\alpha \in [0,1).\) Consider now

      $$\begin{aligned} t_{1,2}:=\frac{-4\alpha ^2+\alpha +9\mp \sqrt{12\alpha ^4-39\alpha ^2-54\alpha +117}}{(1-\alpha )^2(3+\alpha )}. \end{aligned}$$

      Observe first that \(t_1<0.\) Indeed, since \(-4\alpha ^2+\alpha +9>0\) for \(\alpha \in [0,1),\) the inequality \(t_1<0\) is equivalent to

      $$\begin{aligned} \sqrt{12\alpha ^4-39\alpha ^2-54\alpha +117}>-4\alpha ^2+\alpha +9, \end{aligned}$$

      which is equivalent to the true inequality

      $$\begin{aligned} 4\alpha ^4-8\alpha ^3-32\alpha ^2+72\alpha -36<0,\quad \alpha \in [0,1). \end{aligned}$$

      Further, the inequality \(t_2>1\) is equivalent to the true inequality

      $$\begin{aligned} 12\alpha ^4-\alpha ^3-44\alpha ^2-48\alpha +123>0,\quad \alpha \in [0,1). \end{aligned}$$

      Thus, we state that inequality (3.5) is false.

    4. C4.

      Note that the inequality

      $$\begin{aligned} \begin{aligned}&|AB|-|C|(|B|-4|A|)\\&\quad =\frac{(3-\alpha ^2)(3-\alpha )\zeta _1^4}{18(1-\zeta _1^2)}-\frac{2+\zeta _1^2}{3\zeta _1}\left( \frac{3-\alpha }{3}\zeta _1-\frac{2(3-\alpha ^2)\zeta _1^3}{3(1-\zeta _1^2)}\right) \le 0 \end{aligned} \end{aligned}$$

      is equivalent to

      $$\begin{aligned}&(\alpha ^3-7\alpha ^2-5\alpha +27)t^2+(-8\alpha ^2-2\alpha +30)t\nonumber \\&\quad +4\alpha -12\le 0,\quad \alpha \in [0,1), \end{aligned}$$
      (3.6)

      where \(t:{=}\zeta _1^2\in (0,1).\) We have \(\Delta :{=}4\left( 12\alpha ^4{+}48\alpha ^3{-}183\alpha ^2{-}198\alpha {+}549\right) >0\) for \(\alpha \in [0,1).\) Since \(4\alpha ^2+\alpha -15<0\) and \(\alpha ^3-7\alpha ^2-5\alpha +27>0\) for \(\alpha \in [0,1),\) so \(s_1<0,\) where

      $$\begin{aligned} s_{1,2}:=\frac{4\alpha ^2+\alpha -15\mp \sqrt{12\alpha ^4+48\alpha ^3-183\alpha ^2-198\alpha +549}}{\alpha ^3-7\alpha ^2-5\alpha +27}. \end{aligned}$$

      Further, the condition \(s_2>0\) is equivalent to

      $$\begin{aligned} 12\alpha ^4+48\alpha ^3-183\alpha ^2-198\alpha +549>(-4\alpha ^2-\alpha +15)^2, \end{aligned}$$

      which is equivalent to the true inequality

      $$\begin{aligned} \alpha ^4-10\alpha ^3+16\alpha ^2+42\alpha -81<0,\quad \alpha \in [0,1). \end{aligned}$$

      Moreover, the inequality \(s_2<1\) is equivalent to the inequality

      $$\begin{aligned} -\alpha ^6+22\alpha ^5-97\alpha ^4-168\alpha ^3+705\alpha ^2+306\alpha -1215<0 \end{aligned}$$

      which is valid for \(\alpha \in [0,1).\) Thus, inequality (3.6) holds only when

      $$\begin{aligned} 0<\zeta _1\le \sqrt{s_2}=:\zeta '. \end{aligned}$$

      Then, by (3.4) and Lemma 1.2,

      $$\begin{aligned} \begin{aligned} |\gamma _1\gamma _3-\gamma _2^2|&\le \frac{(1-\alpha )^2}{24}\zeta _1(1-\zeta _1^2)(-|A|+|B|+|C|)=\varphi (\zeta _1)\le \varphi (u_0)\\&=\frac{(1-\alpha )^2(\alpha ^2+4\alpha -16)}{48(\alpha ^2+2\alpha -11)}, \end{aligned} \end{aligned}$$
      (3.7)

      where

      $$\begin{aligned} \varphi (u):=\frac{(1-\alpha )^2}{144}\left[ (\alpha ^2+2\alpha -11)u^4+(4-2\alpha )u^2+4\right] ,\quad 0\le u\le \zeta _1', \end{aligned}$$

      and

      $$\begin{aligned} 0<u_0:=\sqrt{\frac{\alpha -2}{\alpha ^2+2\alpha -11}}<\zeta ',\quad \alpha \in [0,1), \end{aligned}$$
      (3.8)

      is a unique critical point, namely the maximum of \(\varphi .\) Observe here that \(u_0<\zeta '\) leads to

      $$\begin{aligned} \begin{aligned}&3\alpha ^8{-}12\alpha ^7{-}135\alpha ^6{+}522\alpha ^5-471\alpha ^4{+}1440\alpha ^3{-}489\alpha ^2-13950\alpha +18468\\&\quad>3\alpha ^8+522\alpha ^5+1440\alpha ^3+3411>0,\quad \alpha \in [0,1), \end{aligned} \end{aligned}$$

      and the last inequality is true.

    5. C5.

      It remains to consider the last case in Lemma 1.2, which taking into account C4 holds for \(\zeta '<\zeta _1<1.\) Then, by (3.4),

      $$\begin{aligned} \begin{aligned} |\gamma _1\gamma _3-\gamma _2^2|&\le \frac{1}{24}(1-\alpha )^2\zeta _1(1-\zeta _1^2)(|C|+|A|)\sqrt{1-\dfrac{B^2}{4AC}}=\psi (\zeta _1)\\&\le \psi (\zeta ')=\frac{(1-\alpha )^2(a_1-a_2\sqrt{b})}{144d^2}\sqrt{\frac{a_3-3(\alpha -1)^2\sqrt{b}}{a_4+2(3-\alpha ^2)\sqrt{b}}}, \end{aligned} \end{aligned}$$
      (3.9)

      where

      $$\begin{aligned} \psi (u):=\frac{(1-\alpha )^2}{144}\left[ (1-\alpha ^2)u^4-2u^2+4\right] \sqrt{\frac{3(-\alpha ^2-2\alpha +7)-3(1-\alpha )^2u^2}{2(3-\alpha ^2)(2+u^2)}} \end{aligned}$$

      for \(\zeta '\le u\le 1,\) and

      $$\begin{aligned} \begin{aligned} a_1&:=-24\alpha ^6-120\alpha ^5+540\alpha ^4+924\alpha ^3-2904\alpha ^2-1572\alpha +4500,\\ a_2&:=8\alpha ^4+4\alpha ^3-52\alpha ^2-12\alpha +84,\\ a_3&:=-3\alpha ^5+3\alpha ^4+99\alpha ^3-159\alpha ^2-360\alpha +612,\\ a_4&:=-4\alpha ^5+20\alpha ^4+30\alpha ^3-138\alpha ^2-54\alpha +234,\\ b&:=12\alpha ^4+48\alpha ^3-183\alpha ^2-198\alpha +549,\\ d&:=\alpha ^3-7\alpha ^2-5\alpha +27 \end{aligned} \end{aligned}$$

      for \(\alpha \in [0,1).\) To see that the last inequality in (3.9) holds observe that \(\psi \) is decreasing. Indeed, we have

      $$\begin{aligned} \begin{aligned} \psi '(u)&=\frac{-3(1-\alpha )^2u}{288(3-\alpha ^2)(2+u^2)^2}\sqrt{\frac{2(3-\alpha ^2)(2+u^2)}{3(-\alpha ^2-2\alpha +7)-3(1-\alpha )^2u^2}}\\&\quad \times \left[ 4(2+u^2)\left( 1-(1-\alpha ^2)u^2\right) \left( 7-2\alpha -\alpha ^2-(1-\alpha )^2u^2\right) \right. \\&\quad +\left. \left( (1-\alpha ^2)u^4-2u^2+4\right) (\alpha -3)^2)\right] ,\quad \zeta '< u<1. \end{aligned} \end{aligned}$$

      Since for \(\zeta '< u<1,\)

      $$\begin{aligned} 7-2\alpha -\alpha ^2-(1-\alpha )^2u^2\ge 7-2\alpha -\alpha ^2-(1-\alpha )^2=6-2\alpha ^2>0 \end{aligned}$$

      and

      $$\begin{aligned} \begin{aligned} (1-\alpha ^2)u^4-2u^2+4&=4-u^2\left( 2-(1-\alpha )^2u^2\right) \ge 4-\left( 2-(1-\alpha )^2u^2\right) \\&=2+(1-\alpha )^2u^2>0, \end{aligned} \end{aligned}$$

      we deduce that \(\psi '\le 0\) for \(\zeta '\le u<1,\) which confirm that \(\psi \) decreases. Simple however tedious computations which we omit show that

      $$\begin{aligned} \varphi (\zeta ')=\psi (\zeta ') \end{aligned}$$

      for each \(\alpha \in [0,1).\) Hence taking into account (3.7) and (3.9) we see that

      $$\begin{aligned} \psi (\zeta ')\le \varphi (u_0)=\frac{(1-\alpha )^2(\alpha ^2+4\alpha -16)}{48(\alpha ^2+2\alpha -11)}. \end{aligned}$$
  4. D.

    Summarizing from parts A–C it follows inequality (3.1). Equality holds for the function \(f\in {\mathcal {A}}\) given by (3.2), where the function \(p\in {\mathcal {P}}\) is of form (1.12) with \(\zeta _1=u_0=:\tau ,\) with \(u_0\) given by (3.8) and \(\zeta _2=-1\), i.e.,

    $$\begin{aligned} p(z)=\frac{1-z^2}{1-2\tau z+z^2},\quad z\in \mathbb {D}. \end{aligned}$$

\(\square \)

For \(\alpha =0\) we get the estimate for the class \(\mathcal {S}^c\) of convex functions [12].

Corollary 3.2

If \(f\in \mathcal {S}^c,\) then

$$\begin{aligned} |\gamma _1\gamma _3-\gamma _2^2|\le \frac{1}{33}. \end{aligned}$$

The inequality is sharp.