Skip to main content
Log in

Existence, Stability and Controllability Results of Coupled Fractional Dynamical System on Time Scales

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

In this work, we establish existence, uniqueness, Hyer-Ulam (HU) stability and controllability results for a coupled fractional dynamical system on time scales. Some fixed point theorems and nonlinear functional analysis have been used to establish these results. Also, we have given an example for different time scales, to show the applications of these obtained analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhao, K., Gong, P.: Existence of positive solutions for a class of higher-order Caputo fractional differential equation. Qualitative Theory Dyn. Syst. 14(1), 157–171 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Zhao, K., Gong, P.: Positive solutions of nonlocal integral BVPs for the nonlinear coupled system involving high-order fractional differential. Math. Slov. 67(2), 447–466 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Zhao, K., Gong, P.: Positive solutions of Riemann-Stieltjes integral boundary problems for the nonlinear coupling system involving fractional-order differential. Adv. Differ. Equ. 2014(1), 254 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Zhao, K.: Impulsive boundary value problems for two classes of fractional differential equation with two different Caputo fractional derivatives. Mediterr. J. Math. 13(3), 1033–1050 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Diethelm, K., Freed, A.D.: On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity. In: Keil, F., Mackens, W., Vob, H., Werther, J. (eds.) Scientific Computing in Chemical Engineering II, pp. 217–224. Springer, Berlin (1999)

    Google Scholar 

  6. Glöckle, W.G., Nonnenmacher, T.F.: A fractional calculus approach to self-similar protein dynamics. Biophys. J. 68(1), 46–53 (1995)

    Google Scholar 

  7. Wang, J.R., Feĉkan, M., Zhou, Y.: Ulam’s type stability of impulsive ordinary differential equations. J. Math. Anal. Appl. 395(1), 258–264 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Wang, J.R., Feĉkan, M.: Practical Ulam–Hyers–Rassias stability for nonlinear equations. Math. Bohem. 1, 47–56 (2017)

    MathSciNet  MATH  Google Scholar 

  9. de Oliveira, E.Capelas, Sousa, J.Vanterler da C.: Ulam–Hyers–Rassias stability for a class of fractional integro–differential equations. Results Math. 73(3), 111 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Hilger, S.: Ein Ma\(\beta \)kettenkalkül mit Anwendung aufZentrumsmannigfaltigkeiten. Universität, Würzburg (1988). (in German)

    Google Scholar 

  11. Naidu, D.: Singular perturbations and time scales in control theory and applications: an overview. Dyn. Contin. Discrete Impulsive Syst. Ser. B 9, 233–278 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Zhuang, K.: Periodic solutions for a stage-structure ecological model on time scales. Electron. J. Differ. Equ. 2007, 1–7 (2007)

    MathSciNet  Google Scholar 

  13. Ferhan, A.M., Biles, D.C., Lebedinsky, A.: An application of time scales to economics. Math. Comput. Modell. 43(7), 718–726 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales. Birkhäuser, Basel (2001)

    MATH  Google Scholar 

  15. Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003)

    MATH  Google Scholar 

  16. Agarwal, R.P., Bohner, M., O’Regan, D., Peterson, A.: Dynamic equations on time scales: a survey. J. Comput. Appl. Math. 141, 1–6 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Agarwal, R.P., Bohner, M.: Basic calculus on time scales and some of its applications. Results Math. 35(1), 3–22 (1999)

    MathSciNet  MATH  Google Scholar 

  18. Liu, H., Xiang, X.: A class of the first order impulsive dynamic equations on time scales. Nonlinear Anal. Theory, Methods Appl. 69(9), 2803–2811 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Dhama, S., Abbas, S.: Square mean almost automorphic solution of stochastic evolution equation with impulses on time scales. Differ. Equ. Appl. 10(4), 449–469 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Bastos, N.R.O., Mozyrska, D., Torres, D.F.M.: Fractional derivatives and integrals on time scales via the inverse generalized Laplace transform. Int. J. Math. Comput. 11, 1–9 (2011)

    MathSciNet  Google Scholar 

  21. Kumar, V., Malik, M.: Existence and stability of fractional integro differential equation with non-instantaneous integrable impulses and periodic boundary condition on time scales. J. King Saud Univ. Sci. 31(4), 1311–1317 (2019)

    Google Scholar 

  22. Ahmadkhanlu, A., Jahanshahi, M.: On the existence and uniqueness of solution of initial value problem for fractional order differential equations on time scales. Bull. Iran. Math. Soc. 38(1), 241–252 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Benkhettou, N., Hammoudi, A., Torres, D.F.M.: Existence and uniqueness of solution for a fractional Riemann–Liouville initial value problem on time scales. J. King Saud Univ. Sci. 28, 87–92 (2016)

    Google Scholar 

  24. Yan, R.A., Sun, S.R., Han, Z.L.: Existence of solutions of boundary value problems for Caputo fractional differential equations on time scales. Bull. Iran. Math. Soc. 42(2), 247–262 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Kumar, A., Malik, M., Sakthivel, R.: Controllability of the second-order nonlinear differential equations with non-instantaneous impulses. J. Dyn. Control Syst. 24(2), 325–342 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Malik, M., Kumar, A.: Controllability of fractional differential equation of order \(\alpha \in (1, 2]\) with non-instantaneous impulses. Asian J. Control 20(2), 935–942 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Malik, M., Kumar, A., Sakthivel, R.: Exact and trajectory controllability of second-order evolution systems with impulses and deviated arguments. Math. Methods Appl. Sci. 41(11), 4259–4272 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Sakthivel, R., Mahmudov, N.I., Kim, J.H.: Approximate controllability of nonlinear impulsive differential systems. Rep. Math. Phys. 60(1), 85–96 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Sakthivel, R., Mahmudov, N.I., Nieto, J.J., Kim, J.H.: On controllability of nonlinear impulsive integrodifferential systems. Dyn. Contin. Discrete Impulsive Syst. Ser. A 15(3), 333–343 (2008)

    MathSciNet  MATH  Google Scholar 

  30. Sakthivel, R.: Approximate controllability of impulsive stochastic evolution equations. Funkcialaj Ekvacioj 52(3), 381–393 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Bohner, M., Wintz, N.: Controllability and observability of time-invariant linear dynamic systems. Math. Bohem. 137(2), 149–163 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Davis, M.J., Gravagne, I.A., Jackson, B.J., Marks, I.I., Robert, J.: Controllability, observability, realizability and stability of dynamic linear systems. Electron. J. Differ. Equ. 2009(37), 1–32 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Malik, M., Kumar, V.: Controllability of neutral differential equation with impulses on time scales. Differ. Equ. Dyn. Equ. (2019). https://doi.org/10.1007/s12591-019-00454-2

    Article  Google Scholar 

  34. Malik, M., Kumar, V.: Existence, stability and controllability results of a Volterra integro-dynamic system with non-instantaneous impulses on time scales. IMA J. Math. Control Inf. (2019). https://doi.org/10.1093/imamci/dnz001

    Article  MATH  Google Scholar 

  35. Lupulescu, V., Younus, A.: On controllability and observability for a class of linear impulsive dynamic systems on time scales. Math. Comput. Modell. 54(5), 1300–1310 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Javidi, M., Ahmad, B.: Dynamic analysis of time fractional order phytoplankton–toxic phytoplankton–zooplankton system. Ecol. Modell. 318, 8–18 (2015)

    Google Scholar 

  37. Carvalho, A., Pinto, C.M.: A delay fractional order model for the co-infection of malaria and HIV/AIDS. Int. J. Dyn. Control 5(1), 168–186 (2017)

    MathSciNet  Google Scholar 

  38. Sokolov, I.M., Klafter, J., Blumen, A.: Fractional kinetics. Phys. Today 55, 48–54 (2002)

    Google Scholar 

  39. Faieghi, M., Kuntanapreeda, S., Delavari, H., Baleanu, D.: LMI-based stabilization of a class of fractional-order chaotic systems. Nonlinear Dyn. 72(1–2), 301–309 (2013)

    MathSciNet  MATH  Google Scholar 

  40. Wang, J., Zhang, Y.: Analysis of fractional order differential coupled systems. Math. Methods Appl. Sci. 38(15), 3322–3338 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Ahmad, B., Nieto, J.J., Alsaedi, A., Aqlan, M.H.: A coupled system of Caputo-type sequential fractional differential equations with coupled (periodic/anti-periodic type) boundary conditions. Mediterr. J. Math. 14(6), 227 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Wang, J., Shah, K., Ali, A.: Existence and Hyers–Ulam stability of fractional nonlinear impulsive switched coupled evolution equations. Math. Methods Appl. Sci. 41(6), 2392–2402 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Ali, Z., Zada, A., Shah, K.: On Ulam’s stability for a coupled systems of nonlinear implicit fractional differential equations. Bull. Malays. Math. Sci. Soc. 42, 1–19 (2018)

    MathSciNet  Google Scholar 

  44. Zhao, K., Suo, L.: Solvability of nonlocal boundary value problem for a class of nonlinear fractional differential coupled system with impulses. Adv. Differ. Equ. 2018(1), 21 (2018)

    MathSciNet  MATH  Google Scholar 

  45. Zhao, K., Huang, H.: Existence results of nonlocal boundary value problem for a nonlinear fractional differential coupled system involving fractional order impulses. Adv. Differ. Equ. 2019(1), 36 (2019)

    MathSciNet  MATH  Google Scholar 

  46. Britton, N.F.: Essential Mathematical Biology. Springer, London (2003)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the associate editor and anonymous reviewers for constructive comments and suggestions to improve the quality of this manuscript. The research of “Vipin Kumar” is supported by the University Grants Commission of India under the fellowship Number 2121540900, Ref. no. 20/12/2015 (ii) EU-V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muslim Malik.

Additional information

Communicated by Norhashidah Hj. Mohd. Ali.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, M., Kumar, V. Existence, Stability and Controllability Results of Coupled Fractional Dynamical System on Time Scales. Bull. Malays. Math. Sci. Soc. 43, 3369–3394 (2020). https://doi.org/10.1007/s40840-019-00871-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-019-00871-0

Keywords

Mathematics Subject Classification

Navigation