Skip to main content
Log in

E-eigenvalue Localization Sets for Fourth-Order Tensors

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

A Geršgorin-type E-eigenvalue localization set and two Brauer-type E-eigenvalue localization sets for fourth-order tensors are presented. As applications, some sufficient conditions for the positive (semi-)definiteness of fourth-order real symmetric tensors and some upper bounds for the Z-spectral radius of fourth-order weakly symmetric nonnegative tensors are obtained. Finally, numerical examples are given to verify the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 4, 1302–1324 (2005)

    Article  MathSciNet  Google Scholar 

  2. Chang, K.C., Pearson, K.J., Zhang, T.: Some variational principles for \(Z\)-eigenvalues of nonnegative tensors. Linear Algebra Appl. 438, 4166–4182 (2013)

    Article  MathSciNet  Google Scholar 

  3. Lim, L.H.: Singular values and eigenvalues of tensors: a variational approach. In: CAMSAP’05: Proceeding of the IEEE International Workshop on Computational Advances in MultiSensor Adaptive Processing, pp. 129–132 (2005)

  4. Hsu, J.C., Meyer, A.U.: Modern Control Principles and Applications. McGraw-Hill, New York (1968)

    MATH  Google Scholar 

  5. Bose, N.K., Kamat, P.S.: Algorithm for stability test of multidimensional filters. IEEE Trans. Acoust. Speech Signal Process. ASSP. 22, 307–314 (1974)

    Article  Google Scholar 

  6. Bose, N.K., Newcomb, R.W.: Tellegons theorem and multivariate realizability theory. Int. J. Electron. 36, 417–425 (1974)

    Article  Google Scholar 

  7. Anderson, B.D.O., Bose, N.K., Jury, E.I.: Output feedback stabilization and related problems-solutions via decision methods. IEEE Trans. Autom. Control AC20, 53–66 (1975)

    Article  MathSciNet  Google Scholar 

  8. Kofidis, E., Regalia, P.A.: On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23, 863–884 (2002)

    Article  MathSciNet  Google Scholar 

  9. Wang, G., Zhou, G., Caccetta, L.: \(Z\)-eigenvalue inclusion theorems for tensors. Discrete Contin. Dyn. Syst. Ser. B 22, 187–198 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Sang, C.: A new Brauer-type \(Z\)-eigenvalue inclusion set for tensors. Numer. Algorithm. 80, 781–794 (2019)

    Article  MathSciNet  Google Scholar 

  11. Zhao, J.: A new \(Z\)-eigenvalue localization set for tensors. J. Inequal. Appl. 2017, 85 (2017)

    Article  MathSciNet  Google Scholar 

  12. Zhao, J., Sang, C.: Two new eigenvalue localization sets for tensors and theirs applications. Open Math. 16, 1267–1276 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Wang, Y.N., Wang, G.: Two \(S\)-type \(Z\)-eigenvalue inclusion sets for tensors. J. Inequal. Appl. 2017, 152 (2017)

    Article  MathSciNet  Google Scholar 

  14. Song, Y., Qi, L.: Spectral properties of positively homogeneous operators induced by higher order tensors. SIAM J. Matrix Anal. Appl. 34, 1581–1595 (2013)

    Article  MathSciNet  Google Scholar 

  15. Li, W., Liu, D., Vong, S.-W.: \(Z\)-eigenpair bounds for an irreducible nonnegative tensor. Linear Algebra Appl. 483, 182–199 (2015)

    Article  MathSciNet  Google Scholar 

  16. He, J.: Bounds for the largest eigenvalue of nonnegative tensors. J. Comput. Anal. Appl. 20, 1290–1301 (2016)

    MathSciNet  MATH  Google Scholar 

  17. He, J., Liu, Y.-M., Ke, H., Tian, J.-K., Li, X.: Bounds for the \(Z\)-spectral radius of nonnegative tensors. Springerplus 5, 1727 (2016)

    Article  Google Scholar 

  18. Liu, Q., Li, Y.: Bounds for the \(Z\)-eigenpair of general nonnegative tensors. Open Math. 14, 181–194 (2016)

    Article  MathSciNet  Google Scholar 

  19. He, J., Huang, T.-Z.: Upper bound for the largest \(Z\)-eigenvalue of positive tensors. Appl. Math. Lett. 38, 110–114 (2014)

    Article  MathSciNet  Google Scholar 

  20. Li, C., Li, Y.: An eigenvalue localization set for tensors with applications to determine the positive (semi-)definitenss of tensors. Linear Multilinear Algebra 64(4), 587–601 (2016)

    Article  MathSciNet  Google Scholar 

  21. Li, C., Li, Y., Kong, X.: New eigenvalue inclusion sets for tensors. Numer. Linear Algebra Appl. 21, 39–50 (2014)

    Article  MathSciNet  Google Scholar 

  22. Li, C., Chen, Z., Li, Y.: A new eigenvalue inclusion set for tensors and its applications. Linear Algebra Appl. 481, 36–53 (2015)

    Article  MathSciNet  Google Scholar 

  23. Li, C., Zhou, J., Li, Y.: A new Brauer-type eigenvalue localization set for tensors. Linear Multiliear Algebra 64(4), 727–736 (2016)

    Article  MathSciNet  Google Scholar 

  24. Li, C., Jiao, A., Li, Y.: An \(S\)-type eigenvalue localization set for tensors. Linear Algebra Appl. 493, 469–483 (2016)

    Article  MathSciNet  Google Scholar 

  25. Lathauwer, L.D., Moor, B.D., Vandewalle, J.: On the best rank-1 and rank-(\(R_1, R_2,\ldots, R_N\)) approximation of higer-order tensors. SIAM J. Matrix Anal. Appl. 21(4), 1324–1342 (2000)

    Article  MathSciNet  Google Scholar 

  26. Zhang, T., Golub, G.H.: Rank-one approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 23(2), 534–550 (2001)

    Article  MathSciNet  Google Scholar 

  27. Bloy, L., Verma, R.: On computing the underlying fiber directions from the diffusion orientation distribution function. In: Medical Image Computing and Computer-Assisted Intervention, vol. 5241, pp. 1–8. Springer (2008)

  28. Qi, L., Yu, G., Wu, E.X.: Higher order positive semidefinite diffusion tensor imaging. SIAM J. Imaging Sci. 3(3), 416–433 (2010)

    Article  MathSciNet  Google Scholar 

  29. Kolda, T.G., Mayo, J.R.: Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 32(4), 1095–1124 (2011)

    Article  MathSciNet  Google Scholar 

  30. Qi, L.: Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines. J. Symbol. Comput. 41, 1309–1327 (2006)

    Article  MathSciNet  Google Scholar 

  31. Devore, R.A., Temlyakov, V.N.: Some remarks on greedy algorithms. Adv. Comput. Math. 5, 173–187 (1996)

    Article  MathSciNet  Google Scholar 

  32. Falco, A., Nouy, A.: A proper generalized decomposition for the solution of elliptic problems in abstract form by using a functional Eckart–Young approach. J. Math. Anal. Appl. 376, 469–480 (2011)

    Article  MathSciNet  Google Scholar 

  33. Wang, Y., Qi, L.: On the successive supersymmetric rank-1 decomposition of higher-order supersymmetric tensors. Numer. Linear Algebra Appl. 14, 503–519 (2007)

    Article  MathSciNet  Google Scholar 

  34. Ammar, A., Chinesta, F., Falcó, A.: On the convergence of a greedy rank-one update algorithm for a class of linear systems. Arch. Comput. Methods Eng. 17, 473–486 (2010)

    Article  MathSciNet  Google Scholar 

  35. Qi, L.: The best rank-one approximation ratio of a tensor space. SIAM J. Matrix Anal. Appl. 32(2), 430–442 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is grateful to the referees and Editor-in-Chief Prof. Rosihan M. Ali for their comments and suggestions. This work is supported by National Natural Science Foundations of China (Grant No. 11501141); Science and Technology Top-notch Talents Support Project of Education Department of Guizhou Province (Grant No. QJHKYZ [2016]066); CAS ‘Light of West China’ Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxing Zhao.

Additional information

Fuad Kittaneh.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J. E-eigenvalue Localization Sets for Fourth-Order Tensors. Bull. Malays. Math. Sci. Soc. 43, 1685–1707 (2020). https://doi.org/10.1007/s40840-019-00768-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-019-00768-y

Keywords

Mathematics Subject Classification

Navigation