Skip to main content
Log in

Bayesian Estimation of Exponentiated Weibull Distribution Under Partially Acceleration Life Tests

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

This paper presents statistical methods for analyzing partially accelerated life test from constant-stress test. The lifetime of items under use condition follows the two-parameter exponentiated Weibull distribution. Based on progressively Type-II censored sample, the classical maximum likelihood method as well as a fully Bayesian method based on Lindley (Trabajos de Estadistica 31:223–237, 1980) approximation form and the Markov chain Monte Carlo technique are developed for inference about model parameters and acceleration factor. Furthermore, approximate confidence intervals and credible intervals are presented. A Monte Carlo simulation is given to study the precision of different estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abd-Elfattah, A.M., Hassan, A.S., Nassr, S.G.: Estimation in step-stress partially accelerated life tests for the Burr Type-XII distribution using Type-I censoring. Stat. Methodol. 5, 502–514 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abdel-Hamid, A.H.: Constant-partially accelerated life tests for Burr Type-XII distribution with progressive Type-II censoring. Comput. Stat. Data Anal. 53, 2511–2523 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. AL-Hussaini, E.K., Abdel-Hamid, A.H.: Bayesian estimation of the parameters, reliability and hazard rate functions of mixtures under accelerated life tests. Commun. Stat. Simul. Comput. 33(4), 963–982 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. AL-Hussaini, E.K., Abdel-Hamid, A.H.: Accelerated life tests under finite mixture models. J. Stat. Comput. Simul. 76(8), 673–690 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Balakrishnan, N., Aggarwale, R.: Progressive Censoring: Theory. Methods and Applications. Birkhäuser, Boston (2000)

    Book  Google Scholar 

  6. Chib, S., Greenberg, E.: Understanding the Metropolis–Hastings algorithm. Am. Stat. 49, 327–335 (1995)

    Google Scholar 

  7. Choudhury, A.: A simple derivation of moments of the exponentiated Weibull distribution. Metrika 62, 17–22 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer, New York (2003)

    Book  Google Scholar 

  9. Guure, C.B., Ibrahim, N.A., Adam, M.B., Bosomprah, S., Mohammed, A.: Bayesian parameter and reliability estimate of Weibull failure time distribution. Bull. Malays. Math. Sci. Soc. (2) 37(3), 611–632 (2014)

    MATH  MathSciNet  Google Scholar 

  10. Jaheen, Z.F.: Estimation based on generalized order statistics from the Burr model. Commun. Stat. Theory Methods 34, 785–794 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jiang, R., Murthy, D.N.P.: The exponentiated Weibull family: a graphical approach. IEEE Trans. Reliab. 48(1), 68–72 (1999)

    Article  Google Scholar 

  12. Lindley, D.V.: Approximate Bayesian method. Trabajos de Estadistica 31, 223–237 (1980)

    Article  Google Scholar 

  13. Liu, J.: Monte Carlo Strategies in Scientific Computing. Springer, New York (2001)

    MATH  Google Scholar 

  14. Mudholkar, G.S., Srivastava, D.K.: Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Trans. Reliab. 42, 99–302 (1993)

    Article  Google Scholar 

  15. Nassar, M.M., Eissa, F.H.: On the exponentiated Weibull distribution. Commun. Stat. Theory Methods 32, 1317–1336 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Nassar, M.M., Eissa, F.H.: Bayesian estimation for the exponentiated Weibull model. Commun. Stat. Theory Methods 33, 2243–2362 (2004)

    MathSciNet  Google Scholar 

  17. Nelson, W.: Accelerated Testing: Statistical Models. Test Plans and Data Analysis. Wiley, New York (1990)

    Book  Google Scholar 

  18. Pandey, B.N.: Estimator of the scale parameter of the exponential distribution using LINEX loss function. Commun. Stat. Theory Methods 26(9), 2191–2202 (1997)

    Article  MATH  Google Scholar 

  19. Robert, C., Casella, G.: Monte Carlo Statistical Methods. Springer, New York (1999)

    Book  MATH  Google Scholar 

  20. Soliman, A.A.: LINEX and quadratic approximate Bayes estimators applied to the Pareto model. Commun. Stat. Simul. Comput. 30(1), 63–77 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank the referees for their helpful remarks and suggestions that improved the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manal M. Yousef.

Additional information

Communicated by Anton Abdulbasah Kamil.

Appendices

Appendix A

The second and mixed partial derivatives of \(\alpha \),\(\beta \), and \(\lambda \) are obtained from (6) as the following:

$$\begin{aligned} \frac{\partial ^{2}L}{\partial \alpha ^{2}}&=-\frac{m_{1+}m_{2}}{\alpha ^{2} }-\sum _{j=1}^{2}\sum _{i=1}^{m_{j}}\left[ \frac{\partial \omega _{3}(\alpha ;t_{ji}) }{\partial \alpha }\right. \\&\quad \ \left. -(\beta -1)\frac{\partial ^{2}\omega _{1}(\alpha ;t_{ji}) }{\partial \alpha ^{2}}-[r_{ji}\lambda ^{j-1}-1]\frac{\partial ^{2}\omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \alpha ^{2}}\right] , \\ \frac{\partial ^{2}L}{\partial \alpha \partial \beta }&=\sum _{j=1}^{2}\sum _{i=1}^{m_{j}}\left[ \frac{\partial \omega _{1}(\alpha ;t_{ji}) }{\partial \alpha }+[r_{ji}\lambda ^{j-1}-1]\frac{\partial ^{2}\omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \alpha \partial \beta }\right] , \\ \frac{\partial ^{2}L}{\partial \alpha \partial \lambda }&=\sum _{i=1}^{m_{2}}r_{2i}\frac{\partial \omega _{2}(\alpha ,\beta ;t_{2i})}{ \partial \alpha }, \\ \frac{\partial ^{2}L}{\partial \beta ^{2}}&=-\frac{m_{1+}m_{2}}{\beta ^{2}} +\sum _{j=1}^{2}\sum _{i=1}^{m_{j}}[r_{ji}\lambda ^{j-1}-1]\frac{\partial ^{2}\omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \beta ^{2}}, \\ \frac{\partial ^{2}L}{\partial \beta \partial \lambda }&=\sum _{i=1}^{m_{2}}r_{2i}\frac{\partial \omega _{2}(\alpha ,\beta ;t_{2i})}{ \partial \beta }, \\ \frac{\partial ^{2}L}{\partial \lambda ^{2}}&=-\frac{m_{2}}{\lambda ^{2}}. \end{aligned}$$

where

$$\begin{aligned} \frac{\partial \omega _{3}(\alpha ;t_{ji})}{\partial \alpha }= & {} \omega _{3}(\alpha ;t_{ji})\ln t_{ji}, \\ \frac{\partial ^{2}\omega _{1}(\alpha ;t_{ji})}{\partial \alpha ^{2}}= & {} D_{1}(\alpha ;t_{ji})\frac{\partial \omega _{1}(\alpha ;t_{ji})}{\partial \alpha }, \\ \frac{\partial ^{2}\omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \alpha ^{2}}= & {} D_{2}(\alpha ,\beta ;t_{ji})\frac{\partial \omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \alpha }, \\ \frac{\partial ^{2}\omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \beta ^{2}}= & {} D_{3}(\alpha ,\beta ;t_{ji})\frac{\partial \omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \beta }, \\ \frac{\partial ^{2}\omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \alpha \partial \beta }= & {} \frac{\partial \omega _{2}(\alpha ,\beta ;t_{ji})}{ \partial \alpha }\left( \frac{1}{\beta }+D_{3}(\alpha ,\beta ;t_{ji})\right) , \\ D_{1}(\alpha ;t_{ji})= & {} \ln t_{ji}-\omega _{3}(\alpha ;t_{ji})[1+\omega _{4}(\alpha ;t_{ji})], \\ D_{2}(\alpha ,\beta ;t_{ji})= & {} D_{1}(t_{ji})+\beta \omega _{3}(\alpha ;t_{ji})\omega _{4}(\alpha ;t_{ji})[1+\omega _{5}(\alpha ,\beta ;t_{ji})], \\ D_{3}(\alpha ,\beta ;t_{ji})= & {} \omega _{1}(\alpha ;t_{ji})[1+\omega _{5}(\alpha ,\beta ;t_{ji})] \end{aligned}$$

and \(\omega _{1}(\alpha ;t_{ji}),\omega _{3}(\alpha ;t_{ji}),\omega _{4}(\alpha ;t_{ji}),\omega _{5}(\alpha ,\beta ;t_{ji}),\frac{\partial \omega _{1}(\alpha ;t_{ji})}{\partial \alpha },\frac{\partial \omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \alpha }\) and \(\frac{\partial \omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \beta }~\)are as given in (5), (7), and (8).

Appendix B

In a three-parameter case \(U=U(\alpha ,\beta ,\lambda )\), Lindley’s approximation form reduces to

$$\begin{aligned} E(U(\alpha ,\beta ,\lambda )|\mathbf {t})&=U+[U_{1}a_{1}+U_{2}a_{2}+U_{3}a_{3}+a_{4}+a_{5}] \nonumber \\&\quad \ +\frac{1}{2}[\psi _{1}(U_{1}\sigma _{11}+U_{2}\sigma _{12}+U_{3}\sigma _{13})+\psi _{2}(U_{1}\sigma _{21}+U_{2}\sigma _{22}+U_{3}\sigma _{23}) \nonumber \\&\quad \ +\psi _{3}(U_{1}\sigma _{31}+U_{2}\sigma _{32}+U_{3}\sigma _{33})]. \end{aligned}$$
(10)

where\(\ U_{i}=\frac{\partial U}{\partial \xi _{i}},\sigma _{ij}~\)is the element \((i,\ j)\) in the variance–covariance matrix \((-\ L_{ij})\), \( i,j=1,2,3\), and

$$\begin{aligned} a_{i}= & {} \rho _{1}\sigma _{i1}+\rho _{2}\sigma _{i2}+\rho _{3}\sigma _{i3},~i=1,2,3\\ a_{4}= & {} U_{12}\sigma _{12}+U_{13}\sigma _{13}+U_{23}\sigma _{23},\\ a_{5}= & {} \frac{1}{2}(U_{11}\sigma _{11}+U_{22}\sigma _{22}+U_{33}\sigma _{33}),\\ \psi _{1}= & {} \sigma _{11}L_{111}+2(\sigma _{12}L_{121}+\sigma _{13}L_{131}+\sigma _{23}L_{231})+\sigma _{22}L_{221}+\sigma _{33}L_{331},\\ \psi _{2}= & {} \sigma _{11}L_{112}+2(\sigma _{12}L_{122}+\sigma _{13}L_{132}+\sigma _{23}L_{232})+\sigma _{22}L_{222}+\sigma _{33}L_{332},\\ \psi _{3}= & {} \sigma _{11}L_{113}+2(\sigma _{12}L_{123}+\sigma _{13}L_{133}+\sigma _{23}L_{233})+\sigma _{22}L_{223}+\sigma _{33}L_{333}, \hbox { where }\\ \rho _{i}= & {} \frac{\partial \rho }{\partial \xi _{i}},U_{ij}=\frac{\partial ^{2}U}{\partial \xi _{i}\partial \xi _{j}},L_{ijk}=\frac{\partial ^{3}L}{ \partial \xi _{i}\partial \xi _{j}\partial \xi _{k}}. \end{aligned}$$

To apply Lindley’s approximation form (B.1), we first observe

$$\begin{aligned} \rho (\alpha ,\beta ,\lambda )= & {} \ln \pi (\alpha ,\beta ,\lambda ) \\\propto & {} -\mu \ln \alpha +(\mu -1)\ln \beta -\ln \lambda -\left( \frac{\alpha ^{2}+\beta \nu }{\alpha \nu }\right) . \end{aligned}$$

therefore,

$$\begin{aligned} \rho _{1}=\frac{\partial \rho }{\partial \alpha }=-\frac{\mu }{\alpha }- \frac{1}{\nu }+\frac{\beta }{\alpha ^{2}},\ \ \ \ \ \ \rho _{2}=\frac{ \partial \rho }{\partial \beta }=\frac{\mu -1}{\beta }-\frac{1}{\alpha },\ \ \ \ \ \ \rho _{3}=\frac{\partial \rho }{\partial \lambda }=-\frac{1}{\lambda }. \end{aligned}$$

and

$$\begin{aligned} L_{111}= & {} \frac{\partial ^{3}L}{\partial \alpha ^{3}}=\frac{2(m_{1+}m_{2})}{ \alpha ^{3}}-\sum _{j=1}^{2}\sum _{i=1}^{m_{j}}\left[ \frac{\partial ^{2}\omega _{3}(\alpha ;t_{ji})}{\partial \alpha ^{2}}-(\beta -1)\frac{\partial ^{3}\omega _{1}(\alpha ;t_{ji})}{\partial \alpha ^{3}}\right. \\&\left. -[r_{ji}\lambda ^{j-1}-1]\frac{\partial ^{3}\omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \alpha ^{3}}\right] , \\ L_{112}= & {} L_{121}=\frac{\partial ^{3}L}{\partial \alpha ^{2}\partial \beta } =\sum _{j=1}^{2}\sum _{i=1}^{m_{j}}\left[ \frac{\partial ^{2}\omega _{1}(\alpha ;t_{ji})}{\partial \alpha ^{2}}+[r_{ji}\lambda ^{j-1}-1]\frac{\partial ^{3}\omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \alpha ^{2}\partial \beta } \right] , \\ L_{113}= & {} L_{131}=\frac{\partial ^{3}L}{\partial \alpha ^{2}\partial \lambda }=\sum _{i=1}^{m_{2}}r_{2i}\frac{\partial ^{2}\omega _{2}(\alpha ,\beta ;t_{2i})}{\partial \alpha ^{2}}, \\ L_{123}= & {} L_{132}=L_{231}=\frac{\partial ^{3}L}{\partial \alpha \partial \beta \partial \lambda }=\sum _{i=1}^{m_{2}}r_{2i}\frac{\partial ^{2}\omega _{2}(\alpha ,\beta ;t_{2i})}{\partial \alpha \partial \beta }, \\ L_{221}= & {} L_{122}=\frac{\partial ^{3}L}{\partial \beta ^{2}\partial \alpha } =\sum _{j=1}^{2}\sum _{i=1}^{m_{j}}[r_{ji}\lambda ^{j-1}-1]\frac{\partial ^{3}\omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \beta ^{2}\partial \alpha }, \\ L_{222}= & {} \frac{\partial ^{3}L}{\partial \beta ^{3}}=\frac{2(m_{1+}m_{2})}{ \beta ^{3}}+\sum _{j=1}^{2}\sum _{i=1}^{m_{j}}[r_{ji}\lambda ^{j-1}-1]\frac{ \partial ^{3}\omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \beta ^{3}}, \\ L_{223}= & {} L_{232}=\frac{\partial ^{3}L}{\partial \beta ^{2}\partial \lambda }=\sum _{i=1}^{m_{2}}r_{2i}\frac{\partial ^{2}\omega _{2}(\alpha ,\beta ;t_{2i})}{\partial \beta ^{2}}, \\ L_{331}= & {} L_{133}=\frac{\partial ^{3}L}{\partial \lambda ^{2}\partial \alpha }=0,\\ L_{332}= & {} L_{233}=\frac{\partial ^{3}L}{\partial \lambda ^{2}\partial \beta }=0, \\ L_{333}= & {} \frac{\partial ^{3}L}{\partial \lambda ^{3}}=\frac{2m_{2}}{ \lambda ^{3}}. \end{aligned}$$

where

$$\begin{aligned} \frac{\partial ^{2}\omega _{3}(\alpha ;t_{ji})}{\partial \alpha ^{2}}= & {} \frac{\partial \omega _{3}(\alpha ;t_{ji})}{\partial \alpha }\ln t_{ji} \\ \frac{\partial ^{3}\omega _{1}(\alpha ;t_{ji})}{\partial \alpha ^{3}}= & {} \left[ \frac{\partial ^{2}\omega _{1}(\alpha ;t_{ji})}{\partial \alpha ^{2}}-\left( \frac{ \partial \omega _{1}(\alpha ;t_{ji})}{\partial \alpha }\right) ^{2}\right] D_{1}(\alpha ;t_{ji}) \\&-\frac{\partial \omega _{1}(\alpha ;t_{ji})}{\partial \alpha }\frac{ \partial \omega _{3}(\alpha ;t_{ji})}{\partial \alpha }, \\ \frac{\partial ^{3}\omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \alpha ^{3}}= & {} \left[ \frac{\partial ^{2}\omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \alpha ^{2}}-\left( \frac{\partial \omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \alpha } \right) ^{2}\right] D_{2}(\alpha ,\beta ;t_{ji}) \\&-\frac{\partial \omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \alpha }\frac{ \partial \omega _{3}(\alpha ;t_{ji})}{\partial \alpha }+(\beta -1)D_{1}(\alpha ;t_{ji}) \\&\times \frac{\partial \omega _{1}(\alpha ;t_{ji})}{\partial \alpha }\frac{ \partial \omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \alpha }, \\ \frac{\partial ^{3}\omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \alpha ^{2}\partial \beta }= & {} \left[ D_{2}(\alpha ,\beta ;t_{ji})-\frac{\partial \omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \alpha }\right] \frac{\partial ^{2}\omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \alpha \partial \beta } \\&+\frac{\partial \omega _{1}(\alpha ;t_{ji})}{\partial \alpha }\frac{ \partial \omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \alpha }, \\ \frac{\partial ^{3}\omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \beta ^{2}\partial \alpha }= & {} D_{3}(\alpha ,\beta ;t_{ji})\left[ \frac{\partial ^{2}\omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \beta \partial \alpha } +\omega _{5}(\alpha ,\beta ;t_{ji})\right. \\&\left. \times \left[ \omega _{1}(\alpha ;t_{ji})\frac{\partial \omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \alpha }-\frac{\partial \omega _{1}(\alpha ;t_{ji})}{\partial \alpha }\right] \right] , \\ \frac{\partial ^{3}\omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \beta ^{3}}= & {} D_{3}(\alpha ,\beta ;t_{ji})\left[ \omega _{1}(\alpha ;t_{ji})\omega _{5}(\alpha ,\beta ;t_{ji})\right. \\&\left. +D_{3}(\alpha ;t_{ji})\right] \frac{\partial \omega _{2}(\alpha ,\beta ;t_{ji})}{ \partial \beta } \end{aligned}$$

Furthermore,

$$\begin{aligned} \psi _{1}= & {} \left[ \frac{2(m_{1+}m_{2})}{\alpha ^{3}}-\sum _{j=1}^{2} \sum _{i=1}^{m_{j}}\left[ \frac{\partial ^{2}\omega _{3}(\alpha ;t_{ji})}{\partial \alpha ^{2}}-(\beta -1)\frac{\partial ^{3}\omega _{1}(\alpha ;t_{ji})}{ \partial \alpha ^{3}}\right. \right. \\&\left. \left. -[r_{ji}\lambda ^{j-1}-1]\frac{\partial ^{3}\omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \alpha ^{3}}\right] \right] \sigma _{11}+2\left[ \sum _{j=1}^{2}\sum _{i=1}^{m_{j}}\left[ \frac{\partial ^{2}\omega _{1}(\alpha ;t_{ji})}{\partial \alpha ^{2}}\right. \right. \\&\left. \left. +[r_{ji}\lambda ^{j-1}-1]\frac{\partial ^{3}\omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \alpha ^{2}\partial \beta }\right] \right] \sigma _{12}+2\left[ \sum _{i=1}^{m_{2}}r_{2i}\frac{\partial ^{2}\omega _{2}(\alpha ,\beta ;t_{2i})}{\partial \alpha ^{2}}\right] \sigma _{13} \\&+2\left[ \sum _{i=1}^{m_{2}}r_{2i}\frac{\partial ^{2}\omega _{2}(\alpha ,\beta ;t_{2i})}{\partial \alpha \partial \beta }\right] \sigma _{23}+\left[ \sum _{j=1}^{2}\sum _{i=1}^{m_{j}}[r_{ji}\lambda ^{j-1}-1]\frac{ \partial ^{3}\omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \beta ^{2}\partial \alpha }\right] \sigma _{22},\\ \psi _{2}= & {} \left[ \sum _{j=1}^{2}\sum _{i=1}^{m_{j}}\left[ \frac{\partial ^{2}\omega _{1}(\alpha ;t_{ji})}{\partial \alpha ^{2}}+[r_{ji}\lambda ^{j-1}-1]\frac{ \partial ^{3}\omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \alpha ^{2}\partial \beta }\right] \right] \sigma _{11} \\&+2\left[ \sum _{j=1}^{2}\sum _{i=1}^{m_{j}}[r_{ji}\lambda ^{j-1}-1]\frac{\partial ^{3}\omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \beta ^{2}\partial \alpha } \right] \sigma _{12} \\&+2\left[ \sum _{i=1}^{m_{2}}r_{2i}\frac{\partial ^{2}\omega _{2}(\alpha ,\beta ;t_{2i})}{\partial \alpha \partial \beta }\right] \sigma _{13}+2\left[ \sum _{i=1}^{m_{2}}r_{2i}\frac{\partial ^{2}\omega _{2}(\alpha ,\beta ;t_{2i})}{\partial \beta ^{2}}\right] \sigma _{23} \\&+\left[ \frac{2(m_{1+}m_{2})}{\beta ^{3}}+\sum _{j=1}^{2} \sum _{i=1}^{m_{j}}[r_{ji}\lambda ^{j-1}-1]\frac{\partial ^{3}\omega _{2}(\alpha ,\beta ;t_{ji})}{\partial \beta ^{3}}\right] \sigma _{22}, \\ \psi _{3}= & {} \left[ \sum _{i=1}^{m_{2}}r_{2i}\frac{\partial ^{2}\omega _{2}(\alpha ,\beta ;t_{2i})}{\partial \alpha ^{2}}\right] \sigma _{11}+2\left[ \sum _{i=1}^{m_{2}}r_{2i}\frac{\partial ^{2}\omega _{2}(\alpha ,\beta ;t_{2i})}{\partial \alpha \partial \beta }\right] \sigma _{12} \\&+\left[ \sum _{i=1}^{m_{2}}r_{2i}\frac{\partial ^{2}\omega _{2}(\alpha ,\beta ;t_{2i})}{\partial \beta ^{2}}\right] \sigma _{22}+\frac{2m_{2}}{\lambda ^{3}} \sigma _{33}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, A.EB.A., Soliman, A.A. & Yousef, M.M. Bayesian Estimation of Exponentiated Weibull Distribution Under Partially Acceleration Life Tests. Bull. Malays. Math. Sci. Soc. 39, 227–244 (2016). https://doi.org/10.1007/s40840-015-0170-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-015-0170-9

Keywords

Navigation