Skip to main content
Log in

Effect of Ludwigite on Pellet Preparation and Metallurgical Properties

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Ludwigite is a multi-element coexisting iron ore. By changing the amount of ludwigite added during the preparation of pellets, the effect of ludwigite on the metallurgical properties of pellets was studied, including compressive strength, reduction swelling rate, and metallurgical properties. The effect of ludwigite addition on the softening–melting droplet properties of pellets was studied, and an appropriate amount of addition was obtained, providing theoretical guidance for practical production. The research results indicate that when the ludwigite addition is 12%, the compressive strength of the pellets reaches the maximum value of 3285 N. The increase in B2O3 content is beneficial for improving the compressive strength of the pellets; when the ratio of ludwigite is 15%, the reduction expansion of the pellets reaches the minimum value of 5.1%. The increase in B2O3 content is beneficial for reducing the reduction expansion of the pellets; the proportion of ludwigite can be appropriately increased in the pellet. Under the condition of not exceeding 6%, the softening–melting droplet property of the pellet does not change much, but after exceeding 6%, the softening–melting droplet property tends to deteriorate.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Fu YF, Hou Y, Wang R, Wang YL, Yang XF, Dong ZH, Liu JJ, Man XF, Yin WZ, Yang B, Tang H (2021) Detailed insights into improved chlorite removal during hematite reverse flotation by sodium alginate. Miner Eng 173:107191

    Article  CAS  Google Scholar 

  2. Yang B, Zhu LT, He JF, Fu YF, Yin WZ (2023) Effective reverse flotation separation of siderite from hornblende using pentaethoxylated tallow amine as a selective collector. Appl Surf Sci 638:158030

    Article  CAS  Google Scholar 

  3. Marincea Ş, Dumitraş DG (2019) Contrasting types of boron-bearing deposits in magnesian skarns from Romania. Ore Geol Rev 112:102952

    Article  Google Scholar 

  4. Tancic P, Dimitrijevic R, Poznanovic M, Pacevski A, Sudar S (2012) Crystal structure and chemical composition of ludwigite from vranovac ore deposit (Boranja Mountain, Serbia). Acta Geol Sin 86(6):1524–1538

    Article  CAS  Google Scholar 

  5. Huang WJ, Jiang T, Liu YJ, Guo TL (2022) Mineralogical properties of ludwigite and the effects of microwave radiation on its particle characteristics and mineral liberation properties. J Microw Power Electromagn Energy 56(2):124–142

    ADS  Google Scholar 

  6. Zhu ZP, You JX, Zhang X, Li GH, Wang J, Luo J, Rao MJ, Peng ZW, Jiang T (2020) Recycling excessive alkali from reductive Soda-Ash roasted ludwigite ore: toward a zero-waste approach. ACS Sustain Chem Eng 8:5317–5327

    Article  CAS  Google Scholar 

  7. Shi Q, Tang J, Chu MS (2023) Key issues and progress of industrial big data-based intelligent blast furnace ironmaking technology. Int J Miner Metall Mater 30(9):1651–1666

    Article  Google Scholar 

  8. Holtstam DH (2001) Crystal chemistry of a manganian ludwigite. Neues Jahrbuch für Mineralogie - Monatshefte 11(11):520–528

    Google Scholar 

  9. Cheng GJ, Liu XZ, He Y, Xue XX, Li LJ (2022) Sintering and smelting property investigations of ludwigite. Processes 10(1):159

    Article  CAS  Google Scholar 

  10. Xiao-jiao FU, Man-sheng CHU, Li-hua GAO, Zheng-gen LIU (2018) Stepwise recovery of magnesium from low-grade ludwigite ore based on innovative and clean technological route - ScienceDirect. Trans Nonferrous Metals Soc China 28(11):2383–2394

    Article  Google Scholar 

  11. Mir M, Janczak J, Mascarenhas YP (2006) X-ray diffraction single-crystal structure characterization of iron ludwigite from room temperature to 15K. J Appl Crystallogr 39(1):42–45

    Article  ADS  CAS  Google Scholar 

  12. You JX, Wang J, Luo J, Peng ZW, Rao MJ, Li GH (2022) A facile route to the value-added utilization of ludwigite ore: boron extraction and MxMg1-xFe2O4 spinel ferrites preparation. J Clean Prod 375:134206

    Article  CAS  Google Scholar 

  13. Ye L, Peng ZW, Tian R, Tang HM, Zhang J, Rao MJ, Li GH (2022) A novel process for highly efficient separation of boron and iron from ludwigite ore based on low-temperature microwave roasting. Powder Technol 410:117848

    Article  CAS  Google Scholar 

  14. Li Y, Gao JT, Lan X, Guo ZC (2022) Boron-iron separation and boron enrichment from boron-bearing iron concentrate at low-temperature enhanced by supergravity. ISIJ Int 62(9):1760–1767

    Article  CAS  Google Scholar 

  15. Wang G, Wang JS, Ding YG, Ma S (2012) New separation method of boron and iron from ludwigite based on carbon bearing pellet reduction and melting technology. ISIJ Int 52(1):45–51

    Article  Google Scholar 

  16. Chun TJ, Mu GT, Meng QM, Long HM, Wang P, Bi CG (2019) Preparation of MgO added iron ore pellets and effects on a pilot scale blast furnace operation. J Min MetallSect B 55(2):167–175

    Article  CAS  Google Scholar 

  17. Nogueira PF, Fruehan RJ (2004) Blast furnace burden softening and melting phenomena: part I. pellet bulk interaction observation. Metall Mater Trans B 35:829–838

    Article  Google Scholar 

  18. Nogueira PF, Fruehan RJ (2006) Blast furnace burden softening and melting phenomena: part III. melt onset and initial microstructural transformations in pellets. Metall Mater Trans B 37:551–558

    Article  Google Scholar 

  19. Li HK, Wang L, Cai GM, Fan JJ, Fan X, Jin ZP (2013) Synthesis and crystal structure of a novel ludwigite borate: Mg2InBO5. J Alloy Compd 575:104–108

    Article  CAS  Google Scholar 

  20. Yang ZC, Liu ZG, Chu MS, Gao LH, Feng C, Tang J (2021) Effect of basicity on metallurgical properties of fluxed pellets with high MgO content. ISIJ Int 61(5):1431–1438

    Article  CAS  Google Scholar 

  21. Wu SL, Liu XQ, Zhou Q, Xu J, Liu CS (2011) Low temperature reduction degradation characteristics of sinter, pellet and lump ore. J Iron Steel Res Int 18(8):20–24

    Article  Google Scholar 

  22. Jasienska S, Orewczyk J, Łędzki A, Durak J (1999) Effect of reduction conditions on structure and phase composition of blast furnace charge composed of alkaline sinters and acidic pellets. Solid State Ionics 117:129–143

    Article  CAS  Google Scholar 

  23. Jiang T, Zhang L, Tang Y, Xia Y, Xue XX (2013) Phase transformation of MgAlON-SiAlON powders synthesized by carbothermal reduction-nitridation from ludwigite tailings. Appl Mech Mater 365–366:1095–1099

    Article  Google Scholar 

  24. Zhang X, Li GH, You JX, Wang J, Luo J, Duan JY, Zhang T, Peng ZW, Rao MJ, Jiang T (2019) Extraction of boron from ludwigite ore: mechanism of soda-ash roasting of lizardite and szaibelyite. Minerals 9(9):533

    Article  ADS  CAS  Google Scholar 

  25. Singh AK, Kumar S, Mishra B, Dishwar RK, Mandal AK, Rao LS, Sinha OP (2022) Direct reduction of fluxed iron ore pellets made from coarse iron ore particles. Can Metall Q 61(4):475–482

    Article  CAS  Google Scholar 

  26. Huang WJ, Liu YJ (2021) Study on microwave-assisted grinding and liberation characteristics for ludwigite. J Microw Power Electromagn Energy: Publ Int Microw Power Inst 55(1):28–44

    ADS  Google Scholar 

  27. Li G, Liang B, Rao M, Zhang Y, Jiang T (2014) An innovative process for extracting boron and simultaneous recovering metallic iron from ludwigite ore. Miner Eng 56:57–60

    Article  CAS  Google Scholar 

  28. Wang G, Xue QG, Wang JS (2016) Effect of Na2CO3 on reduction and melting separation of ludwigite/coal composite pellet and property of boron-rich slag. Trans Nonferrous Metals Soc China 26(1):282–293

    Article  CAS  Google Scholar 

  29. Wang G, Xue QG, She XF, Wang JS (2015) Carbothermal reduction of boron-bearing iron concentrate and melting separation of the reduced pellet. ISIJ Int 55(4):751–757

    Article  CAS  Google Scholar 

  30. Wang G, Xue QG, Wang JS (2018) Carbothermic reduction characteristics of ludwigite and boron-iron magnetic separation. Int J Miner Metall Mater 25(9):1000–1009

    Article  CAS  Google Scholar 

  31. Wu SL, Tuo BY, Zhang LH, Du KP, Sun Y (2014) New evaluation methods discussion of softening-melting and dropping characteristic of BF iron bearing burden. Steel Res Int 85(2):233–242

    Article  CAS  Google Scholar 

  32. Liu JX, Cheng GJ, Liu ZG, Chu MS, Xue XX (2015) Softening and melting properties of different burden structures containing high chromic vanadium titano-magnetite. Int J Miner Process 142:113–118

    Article  CAS  Google Scholar 

  33. Ma LM, Zhang JL, Wang YZ, Lu M, Cai QY, Xu CY, Li Z, Liu ZJ (2022) Mixed burden softening-melting property optimization based on high-silica fluxed pellets. Powder Technol 412:117979

    Article  CAS  Google Scholar 

  34. Flores IV, Matos O, Silva ALD, Bagatini MC (2021) Microstructure and porosity evolution during the reduction, softening and melting of iron-bearing materials. Metall Mater Trans B 52:1716–1738

    Article  Google Scholar 

  35. Guo H, Shen FM, Zhang HY, Gao QJ, Jiang X (2019) High-temperature reduction and melting mechanism of sinter with different MgO content. Metals 9(5):510

    Article  CAS  Google Scholar 

  36. Nishimura T, Higuchi K, Naito M, Kunitomo K (2011) Evaluation of softening, shrinking and melting reduction behavior of raw materials for blast furnace. ISIJ Int 51(8):1316–1321

    Article  CAS  Google Scholar 

  37. Hu QQ, Ma DL, Zhou K, Liu YJ, You Y, You ZX, Lv XW (2022) Phase transformation and slag evolution of vanadium-titanium magnetite pellets during softening-melting process. Powder Technol 396:710–717

    Article  CAS  Google Scholar 

  38. Liu ZG, Chu MS, Wang HT, Zhao W, Xue XX (2016) Effect of MgO content in sinter on the softening-melting behavior of mixed burden made from chromium-bearing vanadium-titanium magnetite. Int J Miner Metall Mater 23:25–32

    Article  CAS  Google Scholar 

  39. Zhang LH, Gao ZX, Yang ST, Tang WD, Xue XX (2020) Effect of basicity on sintering behavior and metallurgical properties of high-chromium vanadium-titanium magnetite. Metals 10(5):569

    Article  Google Scholar 

  40. Wang B, Zhao W, Zhang XH, Hu SY, Guo HW, Chu MS (2011) Revealing the softening-melting behaviors and slag characteristics of vanadium-titanium magnetite burden with various MgO addition. Minerals 12(7):842

    Article  ADS  Google Scholar 

  41. Iron ore pellets for blast furnace and direct reduction feedstocks-determination of the crushing strength (GB/T 14201–2018). (ISO 4700: 2015, MOD).

  42. Iron ore pellets for blast furnace feedstock-determination of the free-swelling index (GB/T 13240–2018). (ISO 4698: 2007, MOD).

Download references

Acknowledgements

The authors are especially grateful to National Natural Science Foundation of China (Grant No. 51904063), National Natural Science Foundation of China (Grant No. 51974077), and Xingliao Talent Plan (Grant No. XLYC1902118), and special thanks are due to the instrumental analysis from Analytical and Testing Center, Northeastern University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenggen Liu or Mansheng Chu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

The contributing editor for this article was Veena Sahajwalla.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Liu, Z. & Chu, M. Effect of Ludwigite on Pellet Preparation and Metallurgical Properties. J. Sustain. Metall. 10, 320–334 (2024). https://doi.org/10.1007/s40831-024-00789-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-024-00789-3

Keywords

Navigation