Skip to main content
Log in

The Behavior of CO2 Supersonic Jets in the Converter Slag-Splashing Process

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

A numerical model was developed to investigate the possibility of using CO2 to replace conventional N2 for the converter slag-splashing process and, thus, promote the recycling of CO2 in the steel industry. The validity of the numerical model was demonstrated using one-dimensional isentropic flow theory and experimental data. By comparing with N2 and O2, it was found that CO2 has a lower velocity and dynamic pressure, higher temperature at the exit of the oxygen lance, and the difference between the three gases decreases gradually with the increasing of axial distance. The oxygen lance is required to have excellent stirring and splashing performance simultaneously for the CO2 slag-splashing process. The five-hole oxygen lance with a central nozzle combines the advantages of single-hole and four-hole oxygen lances, with higher impact force, slower decay of dynamic pressure, higher impact area, and more tremendous average turbulent kinetic energy at a low lance position, providing a better choice for slag splashing. Decreasing the axial distance, increasing the CO2 stagnation pressure, and raising the CO2 preheating temperature could improve the CO2 jet performance by different degrees. This work provides a theoretical basis for the application of CO2 in the converter slag-splashing process.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kim Y, Worrell E (2002) International comparison of CO2 emission trends in the iron and steel industry. Energy Policy 30:827–838. https://doi.org/10.1016/S0301-4215(01)00130-6

    Article  Google Scholar 

  2. Deng L, Adams TA II (2020) Techno-economic analysis of coke oven gas and blast furnace gas to methanol process with carbon dioxide capture and utilization. Energy Convers Manage 204:112315. https://doi.org/10.1016/j.enconman.2019.112315

    Article  CAS  Google Scholar 

  3. Chen Q, Gu Y, Tang Z, Wei W, Sun Y (2018) Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies: a case study in China. Appl Energy 220:192–207. https://doi.org/10.1016/j.apenergy.2018.03.043

    Article  CAS  Google Scholar 

  4. Ryan NA, Miller SA, Skerlos SJ, Cooper DR (2020) Reducing CO2 emissions from US steel consumption by 70% by 2050. Environ Sci Technol 54:14598–14608. https://doi.org/10.1021/acs.est.0c04321

    Article  CAS  Google Scholar 

  5. Holappa L (2020) A general vision for reduction of energy consumption and CO2 emissions from the steel industry. Metals 10:1117. https://doi.org/10.3390/met10091117

    Article  CAS  Google Scholar 

  6. Ren L, Zhou S, Peng T, Ou X (2021) A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China. Renew Sustain Energy Rev 143:110846. https://doi.org/10.1016/j.rser.2021.110846

    Article  CAS  Google Scholar 

  7. Mandova H, Leduc S, Wang C, Wetterlund E, Patrizio P, Gale W, Kraxner F (2018) Possibilities for CO2 emission reduction using biomass in European integrated steel plants. Biomass Bioenergy 115:231–243. https://doi.org/10.1016/j.biombioe.2018.04.021

    Article  CAS  Google Scholar 

  8. Bailera M, Lisbona P, Peña B, Romeo LM (2021) A review on CO2 mitigation in the iron and steel industry through power to X processes. J CO2 Util 46:101456. https://doi.org/10.1016/j.jcou.2021.101456

    Article  CAS  Google Scholar 

  9. Nwachukwu CM, Wang C, Wetterlund E (2021) Exploring the role of forest biomass in abating fossil CO2 emissions in the iron and steel industry-the case of Sweden. Appl Energy 288:116558. https://doi.org/10.1016/j.apenergy.2021.116558

    Article  CAS  Google Scholar 

  10. Dreillard M, Broutin P, Briot P, Huard T, Lettat A (2017) Application of the DMXTM CO2 capture process in steel industry. Energy Procedia 114:2573–2589. https://doi.org/10.1016/j.egypro.2017.03.1415

    Article  CAS  Google Scholar 

  11. Yun S, Jang MG, Kim JK (2021) Techno-economic assessment and comparison of absorption and membrane CO2 capture processes for iron and steel industry. Energy 229:120778. https://doi.org/10.1016/j.energy.2021.120778

    Article  CAS  Google Scholar 

  12. Mastropasqua L, Pierangelo L, Spinelli M, Romano MC, Campanari S, Consonni S (2019) Molten carbonate fuel cells retrofits for CO2 capture and enhanced energy production in the steel industry. Int J Greenhouse Gas Control 88:195–208. https://doi.org/10.1016/j.ijggc.2019.05.033

    Article  CAS  Google Scholar 

  13. Chung W, Roh K, Lee JH (2018) Design and evaluation of CO2 capture plants for the steelmaking industry by means of amine scrubbing and membrane separation. Int J Greenhouse Gas Control 74:259–270. https://doi.org/10.1016/j.ijggc.2018.05.009

    Article  CAS  Google Scholar 

  14. Ibrahim MH, El-Naas MH, Zevenhoven R, Al-Sobhi SA (2019) Enhanced CO2 capture through reaction with steel-making dust in high salinity water. Int J Greenhouse Gas Control 91:102819. https://doi.org/10.1016/j.ijggc.2019.102819

    Article  CAS  Google Scholar 

  15. Yasipourtehrani S, Tian S, Strezov V, Kan T, Evans T (2020) Development of robust CaO-based sorbents from blast furnace slag for calcium looping CO2 capture. Chem Eng J 387:124140. https://doi.org/10.1016/j.cej.2020.124140

    Article  CAS  Google Scholar 

  16. Mendoza EYM, Santos AS, López EV, Drozd V, Durygin A, Chen J, Saxena SK (2019) Iron oxides as efficient sorbents for CO2 capture. J Mater Res Technol 8:2944–2956. https://doi.org/10.1016/j.jmrt.2019.05.002

    Article  CAS  Google Scholar 

  17. Dindi A, Quang DV, Vega LF, Nashef E, Abu-Zahra MR (2019) Applications of fly ash for CO2 capture, utilization, and storage. J CO2 Util 29:82–102. https://doi.org/10.1016/j.jcou.2018.11.011

    Article  CAS  Google Scholar 

  18. Kar S, Kothandaraman J, Goeppert A, Prakash GS (2018) Advances in catalytic homogeneous hydrogenation of carbon dioxide to methanol. J CO2 Util 23:212–218. https://doi.org/10.1016/j.jcou.2017.10.023

    Article  CAS  Google Scholar 

  19. Han B, Wei G, Zhu R, Wu W, Jiang J, Feng C, Dong J, Hu S, Liu R (2019) Utilization of carbon dioxide injection in BOF–RH steelmaking process. J CO2 Util 34:53–62. https://doi.org/10.1016/j.jcou.2019.05.038

    Article  CAS  Google Scholar 

  20. Dong K, Wang X (2019) CO2 utilization in the ironmaking and steelmaking process. Metals 9:273–281. https://doi.org/10.3390/met9030273

    Article  CAS  Google Scholar 

  21. Zhu R, Han BC, Dong K, Wei GS (2020) A review of carbon dioxide disposal technology in the converter steelmaking process. Int J Miner Metall Mater 27:1421–1429. https://doi.org/10.1007/s12613-020-2065-5

    Article  CAS  Google Scholar 

  22. Feng C, Zhu R, Dong K, Wei G, Han B, Li W, Wu W (2021) Effects of nozzle layout and parameters on the jet characteristics of a CO2+ O2 mixed oxygen lance. Metall Mater Trans B 52:425–439. https://doi.org/10.1007/s11663-020-02048-8

    Article  CAS  Google Scholar 

  23. Feng C, Xia T, Wei G, Dong J, Zhu R, Dong K (2021) Supersonic jet characteristics of two parameter oxygen lance nozzle. Ironmak Steelmak 49:1–13. https://doi.org/10.1080/03019233.2021.1968261

    Article  CAS  Google Scholar 

  24. Yi C, Zhu R, Chen BY, Wang CR, Ke JX (2009) Experimental research on reducing the dust of BOF in CO2 and O2 mixed blowing steelmaking process. ISIJ Int 49:1694–1699. https://doi.org/10.2355/isijinternational.49.1694

    Article  CAS  Google Scholar 

  25. Zhao HX, Yuan ZF, Wang WJ, Pan YF, Li SQ (2010) A novel method of recycling CO2 for slag splashing in converter. J Iron Steel Res Int 17:11–16. https://doi.org/10.1016/S1006-706X(10)60190-2

    Article  CAS  Google Scholar 

  26. Wang WJ, Yuan ZF, Matsuura H, Zhao HX, Dai C, Tsukihashi F (2010) Three-dimensional compressible flow simulation of top-blown multiple jets in converter. ISIJ Int 50:491–500. https://doi.org/10.2355/isijinternational.50.491

    Article  CAS  Google Scholar 

  27. Liu K, Yuan ZF, Shi CH, Zhao HM, Wang H (2022) Effect of CaO-SiO2-FeO slag system on coal gasification reaction in CO2-Ar atmosphere and kinetic analysis. J CO2 Util 56:101850. https://doi.org/10.1016/j.jcou.2021.101850

    Article  CAS  Google Scholar 

  28. Thitakamol B, Veawab A, Aroonwilas A (2007) Environmental impacts of absorption-based CO2 capture unit for post-combustion treatment of flue gas from coal-fired power plant. Int J Greenhouse Gas Control 1:318–342. https://doi.org/10.1016/S1750-5836(07)00042-4

    Article  CAS  Google Scholar 

  29. Ansys, Inc. (2018) ANSYS Fluent theory guide 19.2. Ansys, Inc., Canonsburg

    Google Scholar 

  30. Leisieur M (1997) Turbulence in fluids. Kluwer Academic Publisher, Netherlands

    Book  Google Scholar 

  31. Banerjee R (2008) Turbulent conjugate heat and mass transfer from the surface of a binary mixture of ethanol/iso-octane in a countercurrent stratified two-phase flow system. Int J Heat Mass Transf 51:5958–5974. https://doi.org/10.1016/j.ijheatmasstransfer.2008.04.057

    Article  CAS  Google Scholar 

  32. Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3:269–288. https://doi.org/10.1016/B978-0-08-030937-8.50016-7

    Article  Google Scholar 

  33. Yuan ZF, Pan YF (2007) Oxygen lance technology for steelmaking. Metallurgical Industry Press, Beijing

    Google Scholar 

  34. Li XM, Lu M, Xing XD, Zhou C (2021) Concise course of software for scientific research. Metallurgical Industry Press, Beijing

    Google Scholar 

  35. Miller DR, Comings EW (1957) Static pressure distribution in the free turbulent jet. J Fluid Mech 3:1–16. https://doi.org/10.1017/S0022112057000440

    Article  Google Scholar 

  36. Forstall W, Gaylord E (1955) Momentum and mass transfer in a submerged water jet. J Appl Mech 22:161–164. https://doi.org/10.1115/1.4011034

    Article  Google Scholar 

  37. Cheslak FR, Nicholls JA, Sichel M (1969) Cavities formed on liquid surfaces by impinging gaseous jets. J Fluid Mech 36:55–63. https://doi.org/10.1017/S0022112069001509

    Article  Google Scholar 

  38. Zhang CX, Cai ZP, Xu ZH, Liang Y (1995) Mathematical model of velocity distribution in flow field of multijet for large scale oxygen lance. Chin J Eng 17:94–99. https://doi.org/10.13374/j.issn1001-053x.1995.s1.020

    Article  CAS  Google Scholar 

  39. Li M, Li Q, Kuang S, Zou Z (2016) Computational investigation of the splashing phenomenon induced by the impingement of multiple supersonic jets onto a molten slag–metal bath. Ind Eng Chem Res 55:3630–3640. https://doi.org/10.1021/acs.iecr.5b03301

    Article  CAS  Google Scholar 

  40. Sambasivam R, Lenka S, Durst F, Bock M, Chandra S, Ajmani S (2007) A new lance design for BOF steelmaking. Metall Mater Trans B 38:45–53. https://doi.org/10.1007/s11663-006-9004-3

    Article  CAS  Google Scholar 

  41. Rao JP, Li GQ, Yang ZZ (2011) Research and application of new oxygen lance for BOF steelmaking. Adv Mater Res 335:74–79. https://doi.org/10.4028/www.scientific.net/AMR.335-336.74

    Article  CAS  Google Scholar 

  42. Zhao F, Liu F, Sun D, Zhu R, Dong K (2021) Behaviors of supersonic oxygen multi-jets with various preheating temperatures. Metall Mater Trans B 52:2626–2641. https://doi.org/10.1007/s11663-021-02211-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Number 51974022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxin Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

The contributing editor for this article was Veena Sahajwalla.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Yuan, Z., Mei, L. et al. The Behavior of CO2 Supersonic Jets in the Converter Slag-Splashing Process. J. Sustain. Metall. 8, 1803–1815 (2022). https://doi.org/10.1007/s40831-022-00607-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-022-00607-8

Keywords

Navigation