Skip to main content
Log in

Recovery of Rare-Earth Elements from Molten Salt Electrolytic Slag by Fluorine Fixation Roasting and Leaching

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Recycling waste containing rare earth has always been a research hotspot. The molten salt electrolysis process of rare-earth metals and alloys generates a large amount of waste slag, which contains high rare-earth content and, thus, has very considerable recovery value. However, the high content of fluorine in rare-earth molten salt slag brings challenges to the separation of rare-earth elements (REEs) and fluorine. So far, there are few literatures on the recovery of REEs from this slag. Although the reported alkali roasting-leaching process can recover REEs from the slag, it has serious environmental drawbacks, such as the emission of the fluorine-containing wastewater. Herein, this study presents a clean process for recycling REEs molten salt electrolytic slag. The REEs were recovered via fluorine fixation roasting using calcium oxide and calcium chloride and hydrometallurgical leaching in hydrochloric acid solution. The leaching efficiencies of REEs were > 97% under optimum conditions: roasting temperature of 973 K, calcium oxide dosage of 30%, calcium chloride dosage of 10%, HCl concentration of 3 mol/L, and leaching temperature of 363 K. In the roasting process, rare-earth fluorides were converted into oxides by calcium oxide. The addition of calcium chloride with low melting point was conducive to the reaction. The leaching residue was a calcium fluoride-rich concentrate.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Dushyantha N, Batapola N, Ilankoon IMSK, Rohitha S, Premasiri R, Abeysinghe B, Ratnayake N, Dissanayake K (2020) The story of rare earth elements (REEs): occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geol Rev. https://doi.org/10.1016/j.oregeorev.2020.103521

    Article  Google Scholar 

  2. Mancheri NA, Sprecher B, Bailey G, Ge J, Tukker A (2019) Effect of Chinese policies on rare earth supply chain resilience. Resour Conserv Recycl 142:101–112. https://doi.org/10.1016/j.resconrec.2018.11.017

    Article  Google Scholar 

  3. Gergoric M, Barrier A, Retegan T (2019) Recovery of rare-earth elements from neodymium magnet waste using glycolic, maleic, and ascorbic acids followed by solvent extraction. J Sustain Metall 5:85–96. https://doi.org/10.1007/s40831-018-0200-6

    Article  Google Scholar 

  4. Binnemans K, Jones PT, Blanpain B, Gerven TV, Yang Y, Walton A, Buchert M (2013) Recycling of rare earths: a critical review. J Clean Prod 51:1–22. https://doi.org/10.1016/j.jclepro.2012.12.037

    Article  CAS  Google Scholar 

  5. Spedding FH, McGinnis WJ (1951). Preparation of rare earth metals. United States Atomic Energy Commission

  6. Abbasalizadeh A, Malfliet A, Seetharaman S, Sietsma J, Yang Y (2017) Electrochemical extraction of rare earth metals in molten fluorides: conversion of rare earth oxides into rare earth fluorides using fluoride additives. J Sustain Metall 3:627–637. https://doi.org/10.1007/s40831-017-0120-x

    Article  Google Scholar 

  7. Lucas J, Lucas P, Le Mercier T, Rollat A, Davenport W (2014) Rare Earths: Science, Technology, Production and Use. Elsevier Inc., New York

    Google Scholar 

  8. Cai B, Liu H, Kou F, Yang Y, Yao B, Chen X, Wong DS, Zhang L, Li J, Kuang G, Chen L, Zheng J, Guan D, Shan Y (2018) Estimating perfluorocarbon emission factors for industrial rare earth metal electrolysis. Resour Conserv Recy 136:315–323. https://doi.org/10.1016/j.resconrec.2018.04.018

    Article  Google Scholar 

  9. Binnemans K, Jones PT, Blanpain B, Gerven TV, Pontikes Y (2015) Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review. J Clean Prod 99:17–38. https://doi.org/10.1016/j.jclepro.2015.02.089

    Article  CAS  Google Scholar 

  10. Rychkov VN, Kirillov EV, Kirillov SV, Semenishchev VS, Bunkov GM, Botalov MS, Smyshlyaev DV, Malyshev AS (2018) Recovery of rare earth elements from phosphogypsum. J Clean Prod 196:674–681. https://doi.org/10.1016/j.jclepro.2018.06.114

    Article  CAS  Google Scholar 

  11. Rivera RM, Ulenaers B, Ounoughene G, Binnemans K, Gerven TV (2018) Extraction of rare earths from bauxite residue (red mud) by dry digestion followed by water leaching. Miner Eng 119:82–92. https://doi.org/10.1016/j.mineng.2018.01.023

    Article  CAS  Google Scholar 

  12. Peelman S, Kooijman D, Sietsma J, Yang Y (2018) Hydrometallurgical recovery of rare earth elements from mine tailings and WEEE. J Sustain Metall 4:367–377. https://doi.org/10.1007/s40831-018-0178-0

    Article  Google Scholar 

  13. Tang M, Zhou C, Pan J, Zhang N, Liu C, Cao S, Hu T, Ji W (2019) Study on extraction of rare earth elements from coal fly ash through alkali fusion-acid leaching. Miner Eng 136:36–42. https://doi.org/10.1016/j.mineng.2019.01.027

    Article  CAS  Google Scholar 

  14. Wang J, Huang X, Cui D, Wang L, Feng Z, Hu B, Long Z, Zhao N (2017) Recovery of rare earths and aluminum from FCC waste slag by acid leaching and selective precipitation. J Rare Earth 35(11):1141–1148. https://doi.org/10.1016/j.jre.2017.05.011

    Article  CAS  Google Scholar 

  15. Li Y, Liang Y, Shao L, Zou Y, Liang X (2018) Research on process of rare earth recovery from rare earth electrolysis slag by roasting with sodium hydroxide. Rare Metals Cemented Carbides 46(1):5–9

    CAS  Google Scholar 

  16. Li J, Li M, Zhang D, Gao K, Xu W, Wang H, Geng J, Huang L (2020) Clean production technology of Baiyun Obo rare earth concentrate decomposed by Al(OH)3-NaOH. Chem Eng J 382:122790. https://doi.org/10.1016/j.cej.2019.122790

    Article  CAS  Google Scholar 

  17. Li J, Li M, Zhang D, Gao K, Xu W, Wang H, Geng J, Ma X, Huang L (2019) Clean production technology of selective decomposition of Bayan Obo rare earth concentrate by NaOH. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.117616

    Article  Google Scholar 

  18. Wang L, Huang X, Yu Y, Zhao L, Wang C, Feng Z, Cui D, Long Z (2017) Towards cleaner production of rare earth elements from bastnaesite in China. J Clean Prod 165:231–242. https://doi.org/10.1016/j.jclepro.2017.07.107

    Article  CAS  Google Scholar 

  19. Liang Y, Li Y, Xue L, Zou Y (2018) Extraction of rare earth elements from fluoride molten salt electrolytic slag by mineral phase reconstruction. J Clean Prod 177:567–572. https://doi.org/10.1016/j.jclepro.2017.12.244

    Article  CAS  Google Scholar 

  20. Yang Y, Wei T, Xiao M, Niu F, Shen L (2020) Rare earth recovery from fluoride molten-salt electrolytic slag by borax roasting-hydrochloric acid leaching. JOM 72:939–945. https://doi.org/10.1007/s11837-019-03732-0

    Article  CAS  Google Scholar 

  21. Zeng G, Ling B, Li Z, Luo S, Sui X, Guan Q (2019) Fluorine removal and calcium fluoride recovery from rare-earth smelting wastewater using fluidized bed crystallization process. J Hazard Mater 373:313–320. https://doi.org/10.1016/j.jhazmat.2019.03.050

    Article  CAS  Google Scholar 

  22. Hu H, Wang J (2021) Selective extraction of rare earths and lithium from rare earth fluoride molten-salt electrolytic slag by nitration. Hydrometallurgy 200:105552

    Article  CAS  Google Scholar 

  23. Tian L, Chen L, Gong A, Wu X, Cao C, Xu Z (2021) Recovery of rare earths, lithium and fluorine from rare earth molten salt electrolytic slag via fluoride sulfate conversion and mineral phase reconstruction. Miner Eng. https://doi.org/10.1016/j.mineng.2021.106965

    Article  Google Scholar 

  24. Wang J, Hu H (2021) Selective extraction of rare earths and lithium from rare earth fluoride molten-salt electrolytic slag by sulfation. Miner Eng. https://doi.org/10.1016/j.mineng.2020.106711

    Article  Google Scholar 

  25. Liu Z, Shi C, Liu J, Liu M, Cheng Y, Yan B, Wang Z, Chen S, Li H, Qin Q (2015) A recovery method of rare earth metal electrolytic molten salt slag. CN105567985A

  26. Cen P, Wu W, Bian X (2018) Study on kinetic mechanism of bastnaesite concentrates decomposition using calcium hydroxide. Metall Mater Trans B 49B:1197–1204. https://doi.org/10.1007/S11663-018-1239-2

    Article  Google Scholar 

  27. Ropp RC (2013) Encyclopedia of the Alkaline Earth Compounds. Elsevier B.V, New York. https://doi.org/10.1016/C2012-0-00777-6

    Book  Google Scholar 

  28. Sarfo P, Das A, Young C (2021) Extraction and optimization of neodymium from molten fluoride electrolysis. Sep Purif Technol 256:117770. https://doi.org/10.1016/j.seppur.2020.117770

    Article  CAS  Google Scholar 

  29. Chi R, Zhang X, Zhu G, Zhou ZA, Wu Y, Wang C, Yu F (2004) Recovery of rare earth from bastnasite by ammonium chloride roasting with fluorine deactivation. Miner Eng 9–10:1037–1043. https://doi.org/10.1016/j.mineng.2004.04.010

    Article  CAS  Google Scholar 

  30. Yan Q, Li X, Wang Z, Wang J, Guo H, Hu Q, Peng W, Wu X (2012) Extraction of lithium from lepidolite using chlorination roasting-water leaching process. Trans Nonferrous Met Soc China 22:1753–1759. https://doi.org/10.1016/S1003-6326(11)61383-6

    Article  CAS  Google Scholar 

  31. Barbosa LI, González JA, Ruiz MC (2015) Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride. Thermochim Acta 605:63–67. https://doi.org/10.1016/j.tca.2015.02.009

    Article  CAS  Google Scholar 

  32. Gao Z, Wang C, Sun W, Gao Y, Kowalczuk PB (2021) Froth flotation of fluorite: a review. Adv Colloid Interface 290:102382. https://doi.org/10.1016/j.cis.2021.102382

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2020YFC1909003) and the Research Projects of Ganjiang Innovation Academy, and Chinese Academy of Sciences (E055A002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiquan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

The contributing editor for this article was Sharif Jahanshahi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, P., Li, H., Ye, C. et al. Recovery of Rare-Earth Elements from Molten Salt Electrolytic Slag by Fluorine Fixation Roasting and Leaching. J. Sustain. Metall. 8, 522–531 (2022). https://doi.org/10.1007/s40831-022-00503-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-022-00503-1

Keywords

Navigation