Skip to main content

Advertisement

Log in

Metals Production and Metal Oxides Reduction Using Hydrogen: A Review

  • Review Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Hydrogen is projected to be not only a source of clean fuel energy, but also a reducing agent for metals production in the current industrial decarbonization effort. Currently, hydrogen is still not common to be used in many metals production. Hydrogen is only commercially utilized in a limited number of refractory metals (i.e., W, Mo) and partly utilized in Ni and Co metals production. Hydrogen reduction of metal oxides has been extensively studied at laboratory scale, particularly in regard to kinetics and reaction mechanism. These studies provided the fundamental knowledge useful for the development of the industrial metals production process. Recently, experimental approaches, current applications, and technologies related to the hydrogen reduction of metal oxides have been further developed. The current paper reviews selected key studies and provides information on the current status and applications of hydrogen for reduction of metal oxides (with a focus on reduction kinetics and mechanisms of non-ferrous oxides). This study summarized that hydrogen has the potential to be used to recover valuable metal from secondary resources (e.g., Zn from EAF dust, Pb from slag) but further detailed fundamental studies are required for improved processes. The use of hydrogen was also found to be useful for a number of advanced material processing, beyond extractive metallurgy perspective.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. European Commission (2011) In a roadmap for moving to a competitive low carbon economy in 2050. By Commission E

  2. COAG Energy Council (2019) Australia’s national hydrogen strategy. ISBN 987-1-92125-62-0

  3. Cavaliere P (2019) Clean ironmaking and steelmaking processes: efficient technologies for greenhouse emission abatement. Springer, Berlin

    Book  Google Scholar 

  4. Otto A, Robinius M, Grube M, Schiebahn S, Praktiknjo A, Stolten D (2017) Power to steel: reducing CO2 through the integration of renewable energy and hydrogen into the German steel industry. Energies 10(4):451

    Article  Google Scholar 

  5. IEA (2019) The future of hydrogen, IEA, Paris https://www.iea.org/reports/the-future-of-hydrogen

  6. Luidold S, Antrekowistch H (2007) Hydrogen as a reducing agent: state-of-the-art science and technology. JOM 59:20–26

    Article  CAS  Google Scholar 

  7. Zhang Y, Ding W, Guo S, Xu K (2004) Reduction of metal oxide in nonequilibrium hydrogen plasma. China Nonferrous Metal 14:317–321

    CAS  Google Scholar 

  8. Harold HK (1989) Reduction of oxides. In: Harold HK (ed) Transition metal oxides: studies in surface science and catalysis, vol 45. Elsevier, pp 91–109

  9. Sohn HY, Szekely J (1972) A structural model for gas-solid reaction with moving boundary. Chem Eng Sci 27:763–778

    Article  CAS  Google Scholar 

  10. Sohn HY (2005) Overall rate analysis of the gaseous reduction of stable oxides incorporating chemical kinetics, mass transfer, and chemical equilibrium. J Am Ceram Soc 89(3):1006–1013

    Article  Google Scholar 

  11. Szekely J, Evans JW (1971) Studies in gas-solid reactions: part II. An experimental study of nickel oxide reduction with hydrogen. Metall Trans 2:1699–1710

    Article  CAS  Google Scholar 

  12. Valipour MS, Saboohi Y (2007) Modelling of multiple noncatalytic gas-solid reactions in a moving bed of porous pellets based on finite volume method. Heat Mass Transf 43:881–894

    Article  CAS  Google Scholar 

  13. Dang J, Zhang GH, Chou KH, Reddy RG, He Y, Sun Y (2013) Kinetics and mechanism of hydrogen reduction of MoO3 to MoO2. Int J Refract Metals Hard Mater 41:216–223

    Article  CAS  Google Scholar 

  14. Pijolat M, Favergeon L (2018) Kinetics and mechanisms of solid gas reaction. In: Vyazovkin S, Koga N, Schick C (eds) Handbook of thermal analysis and calorimetry: recent advances, techniques and applications, vol 6. Elsevier, Amsterdam, pp 173–212

  15. Li QJ, Hong X (2009) Non-isothermal kinetic model for reduction of ferrous oxide with hydrogen and carbon monoxide. Ironmak Steelmak 36:24–28

    Article  Google Scholar 

  16. Spreitzer D, Schenk J (2019) Reduction of iron oxides with hydrogen: a review. Steel Res Int 10:1900108

    Article  Google Scholar 

  17. Sabat KC, Murphy AB (2017) Hydrogen plasma processing of iron ore. Metall Mater Trans B 48:1561–1594

    Article  CAS  Google Scholar 

  18. Murphy AB (2012) Transport coefficients of plasmas in mixtures of nitrogen and hydrogen. Chem Phys 398:64–72

    Article  CAS  Google Scholar 

  19. Nuber D, Eichberger H, Rollinger R (2006) Circored fine ore direct reduction, Millenium Steel, pp 37–40

  20. Habashi F (ed) (1997) Handbook of extractive metallurgy, vol III. Germany, Weinheim

    Google Scholar 

  21. U.S. Geological Survey (2017) Nickel end-use [through 2003; last modified September 1, 2005], in Kelly, T.D., and Matos G.R., comps., Historical statistics for mineral commodities in the United States (2017 version): U.S. Geological Survey Data Series 140. Accessed 13 Nov 2021

  22. U.S. Geological Survey (2017) Cobalt end-use [through 2003; last modified September 1, 2005], in Kelly, T.D., and Matos G.R., comps., Historical statistics for mineral commodities in the United States (2017 version): U.S. Geological Survey Data Series 140. Accessed 13 Nov 2021

  23. U.S. Geological Survey (2017) Tungsten end-use [through 2003; last modified September 1, 2005], in Kelly, T.D., and Matos G.R., comps., Historical statistics for mineral commodities in the United States (2017 version): U.S. Geological Survey Data Series 140. Accesed 13 Nov 2021

  24. U.S. Geological Survey (2018) Molybdenum end-use [through 2003; last modified September 1, 2005], in Kelly, T.D., and Matos G.R., comps., Historical statistics for mineral commodities in the United States (2018 version): U.S. Geological Survey Data Series 140. Accessed 13 Nov 2021

  25. Charlton MG (1952) Hydrogen reduction of tungsten trioxide. Nature 169:109–110

    Article  CAS  Google Scholar 

  26. Charlton MD (1954) Hydrogen reduction of tungsten oxides. Nature 174:703

    Article  CAS  Google Scholar 

  27. Mannella G, Hougen JO (1956) “β-tungsten” as a product of oxide reduction. J Phys Chem 60(8):1148–1149

    Article  CAS  Google Scholar 

  28. Grifis RC (1958) Equilibrium reduction of tungsten dioxide by hydrogen. J Electrochem Soc 105:398

    Article  Google Scholar 

  29. Xi Y, Zhang Q, Cheng H (2014) Mechanism of hydrogen spillover on WO3 (001) and formation of HxWO3 (x=0.125, 0.25, 0.375, and 0.5). H Phys Chem 118:494–501

    CAS  Google Scholar 

  30. Zaki MI, Fouad NE, Mansour SAA, Muftah AI (2011) Temperature-programmed and X-ray diffractometry studies of hydrogen-reduction course and products of WO3 powder: influence of reduction parameters. Thermochim Acta 523:90–96

    Article  CAS  Google Scholar 

  31. Wu XW, Luo JS, Lu BZ, Xie CH, ZM, Hu MZ, Xu T, Wu GG, Yu ZM, Yi DQ (2009) Crystal growth of tungsten during hydrogen reduction of tungsten oxide at high temperature. Trans Nonferrous Metals Soc China 19:785–789

    Article  Google Scholar 

  32. Fouad NE (1997) Impact of hydrogen spillover on the reduction behaviour of tungsten oxide: isothermal and non-isothermal approaches. J Anal Appl Pyrol 44:13–28

    Article  CAS  Google Scholar 

  33. Fouad NE, Attyia KME, Zaki MI (1993) Thermogravimetry of WO3 reduction in hydrogen: kinetic characterization of autocatalytic effects. Powder Technol 74:31–37

    Article  CAS  Google Scholar 

  34. Lux B, Schubert WD, Haubner R (1988) Behaviour of impurities during the technical hydrogen reduction of tungsten oxides. In: Proceedings of the 1st international conference metallurgy and materials science of tungsten, titanium, rare earths and antimony, vol 1, pp 4–10

  35. Haubner R, Schubert WD, Lassner E, Screiner M, Lux B (1983) Mechanism of Technical reduction of tungsten: part 1. Int J Refract Hard Metals 2(3):108–115

    CAS  Google Scholar 

  36. Haubner R, Schubert WD, Lassner E, Screiner M, Lux B (1983) Mechanism of Technical reduction of tungsten: part 2. Int J Refract Hard Metals 2(4):156

    CAS  Google Scholar 

  37. Wilken TR, Morcom WR, Wert CA (1976) Reduction of tungsten oxide to tungsten metal. Metall Mater Trans B 7:589–597

    Article  Google Scholar 

  38. Sarin VK (1975) Morphological changes occurring during reduction of WO3. J Mater Sci 10:593–598

    Article  CAS  Google Scholar 

  39. Charlton MD (1955) Allotropes of tungsten. Nature 175:131–132

    Article  CAS  Google Scholar 

  40. Bond GC, Tripathi JBP (1976) Studies of hydrogen spillover. Part 3. Catalysis of the reduction of metal oxides by palladium on silica. J Chem Soc Faraday Trans 72:933–941

    Article  CAS  Google Scholar 

  41. Cho M, Park I (2016) Recent trend of light-enhanced metal oxide gas sensors: review. J Sens Sci Technol 25(2):103–109

    Article  Google Scholar 

  42. Moseley PT (2017) Progress in the development of semiconducting metal oxide gas sensors: a review. Meas Sci Technol 28:082001

    Article  Google Scholar 

  43. Urasinska WB, Vincent TA, Chowdhury MF, Gardner JW (2017) Ultrasensitive WO3 gas sensors for NO2 detection in air and low oxygen environment. Sens Actuators B Chem 239:1051–1059

    Article  Google Scholar 

  44. Cui N, Li W, Guo Z, Xu X, Zhao H (2018) Electrocatalytic performance of carbon supported WO3-containing Pd-W nanoalloys for oxygen reduction reaction in alkaline media. Catalysts 8(6):225

    Article  Google Scholar 

  45. Fominski VY, Grigoriev SN, Romanov RI, Volosova MA, Grunin AI, Teterina GD (2016) The formation of a hybrid structure from tungsten selenide and oxide plates for a hydrogen-evolution electrocatalyst. Tech Phys Lett 42:555–558

    Article  CAS  Google Scholar 

  46. Dong P, Hou G, Xi X, Shao R, Dong F (2018) Wo3-based photocatalysts: morphology control, activity enhancement and multifunctional applications. Environ Sci 4:539–557

    CAS  Google Scholar 

  47. Georg A, Krasovec UO (2006) Photoelectrochromic window with Pt catalyst. This Solid Films 502(102):246–251

    Article  CAS  Google Scholar 

  48. Alesanco Y, Vinuales A, Rodriguez J, Tena-Zaera R (2018) All-in-one gel-based electrochromic devices: strength and recent developments. Materials 11(3):414

    Article  Google Scholar 

  49. Berezina OY, Kirienki DA, Markova NP, Stefanovich GB (2015) A flexible optical cell with variable transmittance based on tungsten trioxide. Tech Phys Lett 41:456–468

    Article  Google Scholar 

  50. Eh AL, Tan AMT, Cheng X, Magdassi S, Lee PS (2017) Recent advance in flexible electrochromic devices: prerequisites, challenges, and prospects. Energy Technol 61(1):33–45

    Article  Google Scholar 

  51. Hai Z, Akbari MK, Wei Z, Xue C, Xu H, Hu J, Zhuiykov S (2017) Nano-thickness dependence of supercapacitor performance of the ALD-fabricated two-dimensional WO3. Electrochim Acta 246:625–633

    Article  CAS  Google Scholar 

  52. Oiu M, Sun P, Shen L, Wang K, Song S, Yu X, Tan S, Zhano C, Mai W (2016) WO3 nanoflowers with excellent pseudo-capacitive performance and the capacitance contribution analysis. J Mater Chem A 4:7266–7273

    Article  Google Scholar 

  53. Schubert WD, Lassner E (1991) Production and characterization of hydrogen-reduced submicron tungsten powder. Part I: state of the art in research, production and characterization of raw materials and tungsten powder. Int J Refract Metals Hard Mater 10(3):133–141

    Article  CAS  Google Scholar 

  54. Schubert WD, Lassner E (1991) Production and characterization of hydrogen-reduced submicron tungsten powder. Part II: Controlled decomposition of APT and hydrogen reduction of the oxides. Int J Refract Metals Hard Mater 10(4):171–183

    Article  CAS  Google Scholar 

  55. Wu C (2011) Preparation of ultrafine tungsten powders by in-situ hydrogen reduction of nano-needle violet tungsten oxide. Int J Refract Metals Hard Mater 29:686–691

    Article  CAS  Google Scholar 

  56. Abdullin KA, Azatkaliev AA, Gabdullin MT, Kalkozova ZK, Mukashev BN, Serrikannov AS (2018) Preparation of nanosized tungsten and tungsten oxide powder. Phys Solid State 60:2634–2639

    Article  CAS  Google Scholar 

  57. International Molybdenum Association (IMOA) (2019) Global production and use. https://www.imoa.info/molybdenum/molybdenum-global-production-use.php. Accessed 03 Mar 2021

  58. Sutulov A, Wang CT (2018) Molybdenum processing. Encyclopedia Britannica, 26 Apr. 2018, https://www.britannica.com/technology/molybdenum-processing. Accessed 4 Feb 2021

  59. Hawkins DT, Worrel WL (1970) Hydrogen reduction of MoO3 at temperatures between 300 and 450°C. Metall Trans 1:270–272

    Google Scholar 

  60. Dang J, Zhang GH, Chou KC (2014) Phase transition and morphology evolutions during hydrogen reduction of MoO3 to MoO2. High Temp Mater Proc 33(4):305–312

    Article  CAS  Google Scholar 

  61. Lalik E, David, WIF, Barnes P, Turner JFC (2001) Mechanism of reduction of MoO3 to MoO2 reconciled. J Phys Chem B 105:9153–9156

    Article  CAS  Google Scholar 

  62. Ressler T, Jentoft RE, Wienold J, Gunter MM, Timpe O (2000) In situ XAS and XRD studies on the formation of Mo suboxides during reduction of MoO3. J Phys Chem B 104:6360–6370

    Article  CAS  Google Scholar 

  63. Sloczynski J (1995) Kinetics and mechanism of molybdenum (VI) oxide reduction. J Solid State Chem 118:84–92

    Article  CAS  Google Scholar 

  64. Schulmeyer WV, Ortner HM (2002) Mechanisms of the hydrogen reduction of molybdenum oxides. Int J Refract Metal Hard Mater 20:261–269

    Article  CAS  Google Scholar 

  65. Latif MN, Samsuri A, Wahab M, Hisham M, Yarmo MA (2017) Reduction of molybdenum trioxide by using hydrogen. Mater Sci Forum 888:404–408

    Article  Google Scholar 

  66. Kennedy MJ, Bevan SC (1974) A kinetic study of the reduction of molybdenum trioxide by hydrogen. J Less-Common Metals 36:23–30

    Article  CAS  Google Scholar 

  67. Majumdar S, Sharma IG, Samajdar I, Bhargava P (2008) Kinetic studies on hydrogen reduction of MoO3 and morphological analysis of reduced Mo powder. Metall Mater Trans B 39:431–438

    Article  Google Scholar 

  68. Kim BS, Kim E, Jeon HS, Lee HI, Lee JC (2008) Study of the reduction of molybdenum dioxide by hydrogen. Mater Trans 49:2147–2152

    Article  CAS  Google Scholar 

  69. Sloczynski J, Bobinski W (1991) Autocatalytic effect I the process of metal oxide reduction. II. Kinetics of molybdenum oxide reduction. J Solid State Chem 92:436–448

    Article  CAS  Google Scholar 

  70. Arnoldy de Jonge MJC, Moullin JA P (1985) Temperature-programmed reduction of MoO3 and MoO2. Am Chem Soc 89(21):4517–4526

    Google Scholar 

  71. Borgschulte A, Sambalova O, Delmelle R (2017) Hydrogen reduction of molybdenum oxide at room temperature. Sci Rep 7:40761

    Article  CAS  Google Scholar 

  72. Lamprey H, Ripley RL (1962) Ultrafine tungsten and molybdenum powders. J Electrochem Soc 109(8):713–718

    Article  CAS  Google Scholar 

  73. Saghafi M, Heshmati-Manesh S, Ataie A, Khodadadi AA (2012) Synthesis of nanocrystalline molybdenum by hydrogen reduction of mechanically activated MoO3. Int J Refract Metals Hard Mater 30:128–132

    Article  CAS  Google Scholar 

  74. Sun GD, Zhang GH, Chou KC (2019) Preparation of Mo nanoparticles through hydrogen reduction of commercial MoO2 with the assistance of molten salt. Int J Refract Metal Hard Mater 78:68–75

    Article  CAS  Google Scholar 

  75. Hoseinpur A, Bafghi MS, Khaki JV, Jalaly M, Sakaki M (2015) A mechanistic study on the production of nanosized Mo in microwave assisted combustive reduction of MoO3 by Zn. Int J Refract Metal Hard Mater 50:191–196

    Article  CAS  Google Scholar 

  76. Nersisyan HH, Lee JH, Won CW (2005) The synthesis of nanostructured molybdenum under self-propagating high temperature synthesis mode. Mater Chem Phys 89(2–3):238–288

    Google Scholar 

  77. Liu B, Gu H, Chen Q (1999) Preparation of nanosized Mo powder by microwave plasma chemical vapor deposition method. Mater Chem Phys 59(3):204–209

    Article  CAS  Google Scholar 

  78. Huang Z, Liu J, Den X, Zhang H, Lu L, Hou Z, Zhang S (2015) Low temperature molten salt preparation of molybdenum nanoparticles. Int J Refract Metal Hard Mater 54:315–321

    Article  Google Scholar 

  79. Nickel Institute (2016) The life on Ni www.nickelinstitute.org. Accessed 18 May 2021

  80. Parravano G (1952) The reduction of nickel oxide by hydrogen. J Am Chem Soc 74:1194–1199

    Article  CAS  Google Scholar 

  81. Hidayat T, Rhamdhani MA, Jak E, Hayes PC (2009) Investigation of nickel product structures developed during the gaseous reduction of solid nickel oxide. Metall Mater Trans B 40:462–473

    Article  Google Scholar 

  82. Hidayat T, Rhamdhani MA, Jak E, Hayes PC (2009) The kinetics of reduction of dense synthetic nickel oxide in H2–N2 atmosphere. Metall Mater Trans B 40:1–16

    Article  Google Scholar 

  83. Lee DS, Min DJ (2019) A kinetics of hydrogen reduction of nickel oxide at moderate temperature. Met Mater Int 25:982–990

    Article  CAS  Google Scholar 

  84. Manukyan KV, Avestiyan AG, Shuck CE, Chatilyan HA, Rouvimov S, Kharatyan SL, Mukasyan AS (2015) Nickel oxide reduction by hydrogen: kinetics and structural transformation. J Phys Chem C 119:16131–16138

    Article  CAS  Google Scholar 

  85. Jeangros J, Hansen TW, Wagner JB, Damsgaard CD, Dunin-Borkowski RE, Hebert C, van herle J, Hessler-Wyser A (2012) Reduction of nickel oxide particles by hydrogen studied in an environmental TEM. J Mater Sci 48:2893–2907

    Article  Google Scholar 

  86. Chatterjee R, Banerjee S, Banerjee S, Ghosh D (2012) Reduction of nickel oxide powder and pellet by hydrogen. Trans Indian Inst Met 65:265–273

    Article  CAS  Google Scholar 

  87. Syed-Hasan SSA, Li C (2011) Effects of crystallite size in the kinetics and mechanism of NiO reduction with H2. Int J Chem Kinet 43:667–676

    Article  Google Scholar 

  88. Jankovic B, Adnadevic B, Mentus S (2008) The kinetic study of temperature-programmed reduction of nickel oxide in hydrogen atmosphere. Chem Eng Sci 63:567–575

    Article  CAS  Google Scholar 

  89. Utigard TA, Wu M, Plasencia G, Marin T (2005) Reduction kinetics of Goro nickel using hydrogen. Chem Eng Sci 60:2061–2068

    Article  CAS  Google Scholar 

  90. Richardson JT, Scates R, Twigg MV (2003) X-ray diffraction study of nickel oxide reduction by hydrogen. Appl Catal A 246:137–150

    Article  CAS  Google Scholar 

  91. Rashed AH, Rao YK (1996) Kinetics of reduction of nickel oxide with hydrogen gas in the 230–452°C range. Chem Eng Comm 156:1–30

    Article  Google Scholar 

  92. Nakajima H, Shimizu S, Onuki K, Ikezoe Y, Sato S (1989) Hydrogen reduction of nickel oxide. Chem Soc Jpn 4:681–686

    Google Scholar 

  93. Evans JW, Song S, Leon-Sucre CE (1976) The kinetics of nickel oxide reduction by hydrogen: measurements in a fluidized bed and in a gravimetric apparatus. Metall Trans B 7:55–66

    Article  Google Scholar 

  94. Charcosset H, Frety R, Labbe G, Trambouze Y (1974) Increase of the rate reduction of NiO by H2, due to pretreatment with CO or NH3. J Catal 35:92–99

    Article  CAS  Google Scholar 

  95. Deb Roy T, Abraham KP (1974) Kinetics of reduction of dense sintered spherical pellets of nickel oxide in flowing hydrogen, physical chemistry of process metallurgy; the Richardson Conference, Institute of Mineral Metallurgy, London, pp 85–93

  96. Delmon B, Roman A (1973) Kinetic study of the reduction of nickel near its antiferromagnetic-paramagnetic transition. J Chem Soc Farad Trans 69:941–948

    Article  CAS  Google Scholar 

  97. Szekely J, Lin CI, Sohn HY (1973) A structural model for gas-solid reaction with a moving boundary: an experimental study of the reduction of porous nickel-oxide pellet with hydrogen. Chem Eng Sci 28:1975

    Article  CAS  Google Scholar 

  98. Chiesa F, Rigaud M (1971) The reduction of nickel oxide by hydrogen. Can J Chem Eng 49:617–620

    Article  CAS  Google Scholar 

  99. Bandrowski J, Bickling CR, Yang KH, Hougen OA (1962) Kinetics of the reduction of nickel oxide by hydrogen. Chem Eng Sci 17:379–390

    Article  CAS  Google Scholar 

  100. Rhamdhani MA, Jak E, Hayes P (2008) Basic nickel carbonate: part I. Microstructure and phase changes during oxidation and reduction process. Metall Mater Trans B 39:218–233

    Article  Google Scholar 

  101. Navarro RC, Brocchi DA, De Oliveira PF, Motta MS (2013) Hydrogen reduction of zinc and iron oxides containing mixtures. Metall Mater Trans B 44:66–75

    Google Scholar 

  102. Kazemi M, Sichen D (2016) Investigation of selective reduction of iron oxide in zinc ferrite by carbon and hydrogen. J Sustain Metall 2:73–78

    Article  Google Scholar 

  103. Lee T, Joo S, Nersisya HH, Kong M, Lee J, Park K, Lee J (2016) Reduction kinetics of zinc powder from brass converter slag by pyrometallurgical method using hydrogen gas. Kona Powder Part J 33:278–286

    Article  CAS  Google Scholar 

  104. Imoto T, Harano Y, Nishi Y, Masuda S (1964) The reduction of zinc oxide by hydrogen. III. The effect of nitrogen on the reduction. Bull Chem Soc Jpn 37:441–444

    Article  CAS  Google Scholar 

  105. Imoto T, Harano Y, Nishi Y (1963) The reduction of zinc oxide by hydrogen. J Chem Soc Japan Pure Chem 84:115

    CAS  Google Scholar 

  106. Imoto T, Yoshio H, Yasuhide N (1965) The thermal decomposition of zinc oxide. Bull Chem Soc Jpn 37:1181–1186

    Article  Google Scholar 

  107. Lew S, Sarofim AF, Flytzani-Stephanopoulos M (1992) The reduction of zinc titanate and zinc oxide solids. Chem Eng Sci 47:1421–1431

    Article  CAS  Google Scholar 

  108. Gioia F, Mura G, Viola A (1977) Experimental study of the direct reduction of sintered zinc oxide by hydrogen. Chem Eng Sci 32:1401–1409

    Article  CAS  Google Scholar 

  109. Hegedus AJ, Kiss AB (1965) Thermogravimetrische untersuchung de ZnO + H2 reaktion in stromendem wassertoff. Mikrochim Acta 4–5:813–831

    Google Scholar 

  110. Weirich FA (1926) A study of the reduction of zinc oxide by hydrogen and methane. Masters Theses. 6654. Missouri S&T Library

  111. Lin Y, Hu H, Hu YH (2020) Role of ZnO morphology in its reduction and photocatalysis. Appl Surf Sci 502:144202

    Article  CAS  Google Scholar 

  112. Qi J, Hu X (2020) The loss of ZnO as the support for metal catalysts by hydrogen reduction. Phys Chem 22:3953

    CAS  Google Scholar 

  113. Wardle MG, Goss JP (2006) Firs-principle study of the diffusion of hydrogen in ZnO. Phys Rev Lett 96(205504):1–4

    Google Scholar 

  114. Grant RM (2001) Lead production. In: Buschow KHJ et al (ed) Encyclopedia of materials: science and technology, Elsevier, pp 4439–4442

  115. Ivanov II, Shelmet VM, Ulyanov VV, Teplyakov YA (2015) Kinetics of the reduction of orthorhombic and tetragonal lead oxides to lead with hydrogen. Kinet Catal 56:304–307

    Article  CAS  Google Scholar 

  116. Kannunikova OM, Gilmutdinov FZ, Shakov AA (2002) Interaction of lead silicate glasses with hydrogen under heating. Int J Hydrogen Energy 27:783–791

    Article  Google Scholar 

  117. Yonggang H, Yang Z, Hui H, Zhenan G (2011) XPS study on microporous surface composition of microchannel plates. Advance in imaging detectors and applications 81941Q

  118. Pal UB, Roy TD, Simkovich G (1983) Interfacial effect in gaseous reduction of PbO.SiO2 melts. Metall Trans B 14:693–701

    Article  Google Scholar 

  119. Culver RV, Matthew IG, Spooner ERC (1962) The kinetics of the reduction of lead monoxide by hydrogen. Aust J Chem 15:40–55

    Article  CAS  Google Scholar 

  120. Gallo G (1951) The reduction of metallic oxides with hydrogen. Ann Chim Rome 17:544–552

    Google Scholar 

  121. Blodgett KB (1951) Surface conductivity of lead silicate glass after hydrogen treatment. J Am Ceram Soc 34:14–27

    Article  CAS  Google Scholar 

  122. Pease RN, Taylor HS (1921) The reduction of copper oxide by hydrogen. J Am Chem Soc 43:2179–2188

    Article  CAS  Google Scholar 

  123. Li J, Mayer JW (1992) Nucleation and growth of CuO2 in the reduction of CuO thin films. Am Phys Soc 45:5683–5688

    CAS  Google Scholar 

  124. Kim JY, Hanson JC, Frenkel AI, Lee PL, Rodriguez JA (2004) Reaction of CuO with hydrogen studied by using synchrotron-based x-ray diffraction. J Phys 16:S3479–S3484

    CAS  Google Scholar 

  125. Kim JY, Rodriguez JA, Hanson JC, Frenkel AI, Lee PL (2003) Reduction of CuO and Cu2O with H2: H embedding and kinetics effects in the formation of suboxides. J Am Chem Soc 125:10684–10692

    Article  CAS  Google Scholar 

  126. Rodriguez JA, Kim JY, Hanson JC, Perez M, Frenkel AI (2003) Reduction of CuO2 in H2: in situ time resolved XRD studies. Catal Lett 85:247–254

    Article  CAS  Google Scholar 

  127. Jelic D, Tomic-Tucakovic B, Mentus S (2011) A kinetic study of copper (II) oxide powder reduction with hydrogen, based on thermogravimetry. Thermochim Acta 521:211–217

    Article  CAS  Google Scholar 

  128. Yamukyan MH, Manukyan KV, Kharatyan SL (2009) Copper oxide reduction by hydrogen under the self-propagation reaction mode. J Alloy Compd 473:546–549

    Article  CAS  Google Scholar 

  129. Trehan YN (1962) The reduction of copper oxides by molecular hydrogen. J Inorg Gen Chem 318:107–112

    CAS  Google Scholar 

  130. Vong MSW, Sermon PA, Grant K (1990) In-situ study of reduction of copper catalysts. Catal Lett 4:15–24

    Article  CAS  Google Scholar 

  131. Sabat KC, Paramguru RK, Mishra BK (2016) Reduction of copper oxide by low-temperature hydrogen plasma. Plasma Chem Plasma Process 36:1111–1124

    Article  CAS  Google Scholar 

  132. Sawada Y, Tamaru H, Kogoma M, Kawase M, Hashimoto K (1996) The reduction of copper oxide thin films with hydrogen plasma generated by an atmospheric-pressure glow discharge. J Phys D: Appl Phys 26:2539–2544

    Article  Google Scholar 

  133. Takeda O, Ouchi T, Okabe TH (2020) Recent progress in titanium extraction and recycling. Metall Mater Trans B 51:1315–1328

    Article  CAS  Google Scholar 

  134. Lefler H, Fang ZZ, Zhang Y, Sun P, Xia Y (2018) Mechanisms of hydrogen-assisted magnesiothermic reduction of TiO2. Metall Mater Trans B 49:2998–2308

    Article  CAS  Google Scholar 

  135. Newberry E, Pring JN (1916) The reduction of metallic oxides with hydrogen at high pressure. Proc R Soc A 92:276–286

    Google Scholar 

  136. Zhang G, Ostrovski O (2000) Reduction of titania by methane-hydrogen-argon gas mixture. Metall Trans B 31:129–140

    Article  Google Scholar 

  137. Hashimoto T (1968) Fused salt electrolysis of titanium metal from titanium-carbon-oxygen alloys or TiC. J Jpn Inst 32:1327–1333

    Article  CAS  Google Scholar 

  138. Jiao S, Zhu H (2006) Novel metallurgical process for titanium production. J Mater Res 21:2172

    Article  CAS  Google Scholar 

  139. Takeuchi S, Watanabe O (1964) On the extraction of titanium from the anode of TiO, TiC and Ti-CO alloys by electrolysis in the molten salt bath. J Jpn Inst Metals 28:627–632

    Article  CAS  Google Scholar 

  140. Aschauer U, Selloni A (2012) Hydrogen interaction with the anatase TiO2(101) surface. Phys Chem Phys 14:16595–16602

    Article  CAS  Google Scholar 

  141. Selcuk S, Zhao X, Selloni A (2018) Structural evolution of titanium dioxide during reduction in high-pressure hydrogen. Nat Mater 17:923–928

    Article  CAS  Google Scholar 

  142. Wu H, Xu C, Xu J, Lu L, Fan Z, Chen X, Song Y, Li D (2013) Enhanced supercapacitance I anodic TiO2 nanotube film by hydrogen plasma treatment. Nanotechnology 24:455401

    Article  Google Scholar 

  143. Glaser F (1903) Reduction of metal oxides in a hydrogen stream. J Inorg Chem 36:1–35

    Google Scholar 

  144. Bulavchenko OA, Cherepanova SV, Malakhov VV, Dovlitova LS, Ishchenko AV, Tsybulya SV (2009) In situ XRD study of nanocrystalline cobalt oxide reduction. Kinet Catal 50:192–198

    Article  CAS  Google Scholar 

  145. Kuznetsov AN, Kulish NF (1959) Certain characteristics of the kinetics and mechanisms of processes of reducing Co3O4 with hydrogen. H. Izvestiya Akademii Nauk SSSR. Otdelenie Tekhnichesikikh Nauk Metallutgiya I Toplivo 4:52–58

    Google Scholar 

  146. Balakirev V (1960) Reduction mechanism and kinetics of cobalt oxides. Dokl Acad Sci USSR 135:1127–1130

    CAS  Google Scholar 

  147. James OO, Maity S (2016) Temperature programme reduction (TR) studies of cobalt phases in ϒ-alumina supported cobalt catalysis. J Petrol Technol Altern Fuels 7:1–12

    Article  CAS  Google Scholar 

  148. Garces LJ, Hincapie B, Zerger R, Suib SL (2015) The effect of temperature and support on the reduction of cobalt oxide: an in-situ X-ray diffraction study. J Phys Chem C 119:5484–5490

    Article  CAS  Google Scholar 

  149. Sabat KC, Paramguru RK, Pradhan S, Mishra BK (2015) Reduction of cobalt oxide (Co3O4) by low temperature hydrogen plasma. Plasma Chem Plasma Process 35:387–399

    Article  CAS  Google Scholar 

  150. Tomic-Tucakovic B, Majstorovic D, Jelic D, Mentus S (2012) Thermogravimetric study of the kinetics of Co3O4 reduction by hydrogen. Thermochim Acta 541:15–24

    Article  CAS  Google Scholar 

  151. Lin HY, Chen YW (2004) The mechanism of reduction of cobalt by hydrogen. Mater Chem Phys 85:171–175

    Article  CAS  Google Scholar 

  152. Potoczna-Petru D, Kepinski L (2001) Reduction study of Co3O4 model catalyst by electron microscopy. Catal Lett 74:41–46

    Article  Google Scholar 

  153. Galegos NG (1988) Kinetic study of cobalt oxide reduction by hydrogen. Mater Chem Phys 19:431–446

    Article  Google Scholar 

  154. Kohl HK, Marincek B (1966) Kinetics of the reduction of cobalt (II) oxide with hydrogen. Helv Chim Acta 49(4):1229–1237

    Article  CAS  Google Scholar 

  155. Balakirev VF, Chuvarof GI (1963) Effect of water vapor on the rate of reduction of cobalt oxides by hydrogen. Zh Prikl Khim 36:1458–1461

    CAS  Google Scholar 

  156. Gurmen S, Guven A, Ebin B, Stopic S, Friendrich B (2009) Synthesis of nano-crystalline spherical cobalt-iron (Co-Fe) alloy particles by ultrasonic spray pyrolysis and hydrogen reduction. J Alloys Compd 481:600–604

    Article  CAS  Google Scholar 

  157. Jang HD, Hwang DW, Kim DP, Kim HC, Lee BY, Jeong IB (2004) Preparation of cobalt nanoparticles by hydrogen reduction of cobalt chloride in the gas phase. Mater Res Bull 39:63–70

    Article  CAS  Google Scholar 

  158. Malcolm NR (1927) Method of obtaining chromium. United States Patent Office (Patented 31 Dec 1929). Serial No. 232,204

  159. Straler K, Mantell CL (1964) Kinetics of hydrogen reduction of chrome oxide. J Metall Soc AIME 230:1141

    Google Scholar 

  160. Chu WF, Rahmel A (1979) The kinetics of the reduction of chromium oxide by hydrogen. Metall Trans B 10:401–407

    Article  Google Scholar 

  161. Ostrovskii VE, Kadyshevich EA, Gostev BV, Lapidus AL (2008) An adsorption and calorimetric study of the interaction of hydrogen with chromium oxide. Russ J Phys Chem 82:1626–1632

    Article  CAS  Google Scholar 

  162. Katayama HG (1986) The hydrogen reduction kinetics of chromic oxide pellet. J Jpn Inst Metals 50:993–998

    Article  CAS  Google Scholar 

  163. Qayyum MA, Reeve DA (1976) Reduction of chromites to sponge ferrochromium in methane-hydrogen mixtures. Can Metall Q 15:193–200

    Article  CAS  Google Scholar 

  164. Herbell TP (1973) Thermogravimetric study of the reduction of oxides of nickel and chromium. National Aeronautics and Space Administration. TM X-2688 Washington, DC

  165. Griffith RH, Hill SG, Plant JHG (1937) The reduction of chromium oxide. Trans Faraday Soc 33:1419–1425

    Article  CAS  Google Scholar 

  166. Vesel A, Mozetic M, Balat-Pichelin M (2016) Reduction of a thin chromium oxide film on Inconel surface upon treatment with hydrogen plasma. Appl Surf Sci 387:1140–1146

    Article  CAS  Google Scholar 

  167. Anacleto N, Ostrovski O (2004) Solid-state reduction of chromium oxide by methane-containing gas. Metall Mater Trans B 35:609–616

    Article  Google Scholar 

  168. Read PJ, Reeve DA, Walsh JH, Rehder JE (1974) Reduction of chromites in methane-hydrogen mixtures-chromium sesquioxide. Can Metall Q 13:587–595

    Article  CAS  Google Scholar 

  169. Barner HE, Mantell CL (1968) Kinetics of hydrogen reduction of manganese dioxide. I&EC Process Des Dev 7:285–295

    Article  CAS  Google Scholar 

  170. Bruijn TJW, Soerawidjaja TH, De Jong WA, Van den Berg PJ (1980) Modelling of the reduction of manganese oxide with hydrogen. Chem Eng Sci 35(7):1591–1599

    Article  Google Scholar 

  171. Tatievskaya EP, Antonov VK, Chufarov GM (1949) Rate of reduction of manganese oxides by hydrogen and by carbon monoxide. Aad Nauk SSSR 68:561–564

    CAS  Google Scholar 

  172. El-Hussiny NA, Hala HA, Mohamed FM, Shalabi MEH (2015) Pelletazion ans reduction of Egyptian low-grade manganese ore pellets via hydrogen at 750–950°C. Int J Sci Eng Res 6:339–347

    Google Scholar 

  173. Anacleto N, Ostrovski O, Ganguly S (2004) Reduction of manganese ores by methane-containing gas. ISIJ Int 44:1615–1622

    Article  CAS  Google Scholar 

  174. Terayama K, Shimazaki T (1999) Effect of hydrogen on the reduction kinetics of manganese oxide at high temperatures by new EGA method. Netsu Sokutei 27(1):13–18

    Google Scholar 

  175. Brooks CS (1967) The kinetics of hydrogen and carbon monoxide oxidation over a manganese oxide. J Catal 8:272–282

    Article  CAS  Google Scholar 

  176. Cismaru ID, Vass M (1962) Rev Chim Acad Rep Populaire Roumaine 7(1):1962

    Google Scholar 

  177. Stobbe ER, de Boer BA, Geus JW (1999) The reduction and oxidation behaviour of manganese oxides. Catal Today 47:161–167

    Article  CAS  Google Scholar 

  178. Cheraghi A, Yoozbashizadeh H, Safarian J (2020) Gaseous reduction of manganese ores: a review and theoretical insight. Miner Process Extr Metall Rev 41:198–213

    Article  CAS  Google Scholar 

  179. Liu B, Zhang Y, Su Z, Peng Z, Li G, Jiang T (2017) Thermodynamic analysis and reduction of MnO2 by methane-hydrogen gas mixture. JOM 69:1669–1676

    Article  CAS  Google Scholar 

  180. Bolivar C, Charcosset R, Frety R, Primet M, Tournayan L, Betizeau C, Leclercq G, Maurel R (1975) Platinum-rhenium/alumina catalyst: I. Investigation of reduction by hydrogen. J Catal 39(2):249–259

    Article  CAS  Google Scholar 

  181. Bai M, Liu ZH, Zhou LJ, Liu ZY, Zhang CF (2013) Preparation of ultrafine rhenium powders by CVD hydrogen reduction. Trans Nonferrous Met Soc China 23:538–542

    Article  CAS  Google Scholar 

  182. Vandroux L, Eymes SN, Monchoix H, Imier St. (2005) Reduction of native oxide at germanium interface using hydrogen-based plasma. United States Patent US6946368B1

  183. Kim BS, Lee JC, Yoon HS, Kim S (2011) Materials transaction. Jpn Inst Metals 52:1814–1817

    CAS  Google Scholar 

  184. Centikaya S, Eroglu S (2012) Thermodynamic analysis and reduction of tin oxide with methane. Int J Miner Process 110–111:71–73

    Google Scholar 

  185. Ha H, Yoo M, An H, Shin K, Han T, Sohn Y, Kim S, Lee S, Han JH, Kim HY (2017) Design of reduction process of SnO2 by CH2 for efficient Sn recovery. Sci Rep 7:1–9

    Article  Google Scholar 

  186. An H, Yoo M, Ha H, Choi H, Jang E, Kim HY (2019) Efficient Sn recovery from SnO2 by alkane reduction. Scientific Report, pp 1–9

  187. Seftejani MN, Schenk J, Zarl MA (2019) Reduction of haematite using hydrogen thermal plasma. Materials 12:1608

    Article  CAS  Google Scholar 

  188. Rajput P, Bhoi B, Sahoo S, Paramguru RK, Mishra BK (2013) Preliminary investigation into direct reduction of iron in low temperature hydrogen plasma. Ironmak Steelmak 40(1):61–68

    Article  CAS  Google Scholar 

  189. Fridman A (2008) Plasma chemistry. Cambridge University Press, Cambridge

    Book  Google Scholar 

  190. Badr K, Back E, Krieger W (2007) Reduction of iron ore by a mixture of Ar-H2 with CO and CO2 under plasma application. In: Proceedings of the 18th international symposium of plasma chemistry, Kyoto, 26–31 August

  191. Zhang Y, Ding W, Lu X, Guo S, Xu K (2005) Reduction of TiO2 with hydrogen cold plasma in DC pulsed glow discharge. Trans Nonferrous Met Soc China 3:594–599

    Google Scholar 

  192. Palmer RA, Doan TM, Lloyd PG, Jarvis BL, Ahmed NU (2002) Reduction of TiO2 with hydrogen plasma. Plasma Chem Plasma Process 22:335–350

    Article  CAS  Google Scholar 

  193. Kitamura T, Shibata K, Koichi T (1993) In-flight reduction of Fe2O3, Cr2O3, TiO2 and Al2O3 by Ar-H2 and Ar-CH4 plasma. ISIJ Int 33:1150–1158

    Article  CAS  Google Scholar 

  194. Huczko A, Meubus P (1988) Vapor phase reduction of chromic oxide in an Ar-H2 Rf plasma. Metall Trans B 19:927–934

    Article  Google Scholar 

  195. Kamiya K, Kitahara N, Morinaka I, Sakuraya K, Ozawa M, Tanaka M (1984) Reduction of molten iron oxide and FeO bearing slags by H2-Ar plasma. Trans Iron Steel Inst Jpn 24:7–16

    Article  Google Scholar 

  196. Nakamura Y, Ito M, Ishikawa H (1981) Reduction and dephosporization of molten iron oxide with hydrogen-argon plasma. Plasma Chem Plasma Process 1:149–160

    Article  CAS  Google Scholar 

  197. MacRae DR, Gold RG, Sandall WR, Thompson PG, Cheplick PG (1977) Patent No. 4002466, United States Patent Office

  198. Bolotov AV, Isikov VS, Filkov MN (1976) In: Plasma processes in metallurgy and technology of inorganic materials, A.A. Baikov Institute of Metallurgy of USSR Academy of Sciences, Nauka (Science), Moscow

  199. Stokes CS (1971) Reactions under plasma conditions, vol 2. Wiley, New York, p 259

    Google Scholar 

  200. McLaughlin WJ (1969) Patent No. 3429691, United States Pattent Office

  201. Bergh AA (1965) Atomic hydrogen as a reducing agent. Bell Syst Tech J 44(2):261–271

    Article  CAS  Google Scholar 

  202. Stokes CS (1964) Plasma jet chemistry, final report, Air Force office of Scientific Research, Contract AFOSR-62-196

Download references

Acknowledgements

This work was conducted as part of the PhD study of Ms Asywendi Rukini which is co-funded by Umicore Corporate Research and Development (Belgium) and Swinburne University of Technology (Australia) under the Joint SUPRA Growth Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Rhamdhani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

The contributing editor for this article was Markus Reuter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rukini, A., Rhamdhani, M.A., Brooks, G.A. et al. Metals Production and Metal Oxides Reduction Using Hydrogen: A Review. J. Sustain. Metall. 8, 1–24 (2022). https://doi.org/10.1007/s40831-021-00486-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-021-00486-5

Keywords

Navigation