Skip to main content
Log in

Functional Properties of Highly Textured Fe–Ni–Co–Al–Ti–B Shape Memory Alloy Wires

  • TECHNICAL ARTICLE
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

The effect of thermomechanical treatments on grain size and precipitate evolution as well as their impact on the shape memory properties of cold-drawn Fe41–Ni28–Co17–Al11.5–Ti2.5–B0.05 (at. %) wires were studied. Cold drawing produces a strong {hkl} < 111 > /{hkl} < 001 > texture in this alloy. Different thermal treatments promote the evolution of specific recrystallisation textures as well as grain growth, while ageing at 600 °C to 650 °C leads to the formation of γ’ precipitates. Variation in size and distribution of the precipitates via ageing significantly affect the functional properties. A maximum transformation strain of 1.3% without fracture was obtained on sample tested on heating–cooling experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The dataset used in this study is available upon reasonable request.

References

  1. Otsuka K, Wayman CM (eds) (1998) Shape Memory Materials. Cambridge University Press, Cambridge

    Google Scholar 

  2. Tanaka Y, Himuro Y, Kainuma R, Sutou Y, Omori T, Ishida K (2010) Ferrous polycrystalline shape-memory alloy showing huge superelasticity. Science 327:1488–1490. https://doi.org/10.1126/science.1183169

    Article  CAS  Google Scholar 

  3. Ma J, Kockar B, Evirgen A, Karaman I, Luo ZP, Chumlyakov YI (2012) Shape memory behavior and tension-compression asymmetry of a FeNiCoAlTa single-crystalline shape memory alloy. Acta Mater 60:2186–2195. https://doi.org/10.1016/j.actamat.2011.12.047

    Article  CAS  Google Scholar 

  4. Omori T, Ando K, Okano M, Xu X, Tanaka Y, Ohnuma I, Kainuma R, Ishida K (2011) Superelastic effect in polycrystalline ferrous alloys. Science 333:68–71. https://doi.org/10.1126/science.1202232

    Article  CAS  Google Scholar 

  5. Omori T, Abe S, Tanaka Y, Lee DY, Ishida K, Kainuma R (2013) Thermoelastic martensitic transformation and superelasticity in Fe–Ni–Co–Al–Nb-B polycrystalline alloy. Scr Mater 69:812–815. https://doi.org/10.1016/j.scriptamat.2013.09.006

    Article  CAS  Google Scholar 

  6. Tseng LW, Ma J, Karaman I, Wang SJ, Chumlyakov YI (2015) Superelastic response of the FeNiCoAlTi single crystals under tension and compression. Scr Mater 101:1–4. https://doi.org/10.1016/j.scriptamat.2014.12.021

    Article  CAS  Google Scholar 

  7. Geng Y, Jin M, Ren W, Zhang W, Jin X (2013) Effects of aging treatment on martensitic transformation of Fe-Ni-Co-Al-Ta-B alloys. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2012.03.033

    Article  Google Scholar 

  8. Karaca HE, Turabi AS, Chumlyakov YI, Kireeva I, Tobe H, Basaran B (2016) Superelasticity of [001]-oriented Fe42·6Ni27.9Co17·2Al9.9Nb2.4 ferrous shape memory alloys. Scr Mater 120:54–57. https://doi.org/10.1016/j.scriptamat.2016.04.008

    Article  CAS  Google Scholar 

  9. Lee D, Omori T, Kainuma R (2014) Ductility enhancement and superelasticity in Fe–Ni–Co–Al–Ti-B polycrystalline alloy. J Alloys Compd 617:120–123. https://doi.org/10.1016/j.jallcom.2014.07.136

    Article  CAS  Google Scholar 

  10. Ma J, Hornbuckle BC, Karaman I, Thompson GB, Luo ZP, Chumlyakov YI (2013) The effect of nanoprecipitates on the superelastic properties of FeNiCoAlTa shape memory alloy single crystals. Acta Mater 61:3445–3455. https://doi.org/10.1016/j.actamat.2013.02.036

    Article  CAS  Google Scholar 

  11. Krooß P, Niendorf T, Karaman I, Chumlyakov Y, Maier HJ (2012) Cyclic deformation behavior of aged FeNiCoAlTa single crystals. Funct Mater Lett. https://doi.org/10.1142/S1793604712500452

    Article  Google Scholar 

  12. Zhang C, Zhu C, Shin S, Casalena L, Vecchio K (2019) Grain boundary precipitation of tantalum and NiAl in superelastic FeNiCoAlTaB alloy. Mater Sci Eng A 743:372–381. https://doi.org/10.1016/j.msea.2018.11.077

    Article  CAS  Google Scholar 

  13. Fu H, Li W, Song S, Jiang Y, Xie J (2016) Effects of grain orientation and precipitates on the superelasticity in directionally solidified FeNiCoAlTaB shape memory alloy. J Alloys Compd 684:556–563. https://doi.org/10.1016/j.jallcom.2016.05.209

    Article  CAS  Google Scholar 

  14. Sobrero CE, La Roca P, Roatta A, Bolmaro RE, Malarría J (2012) Shape memory properties of highly textured Cu–Al–Ni–(Ti) alloys. Mater Sci Eng A. https://doi.org/10.1016/j.msea.2011.12.104

    Article  Google Scholar 

  15. Bhattacharyya JJ, Agnew SR, Muralidharan G (2015) Texture enhancement during grain growth of magnesium alloy AZ31B. Acta Mater 86:80–94. https://doi.org/10.1016/j.actamat.2014.12.009

    Article  CAS  Google Scholar 

  16. Sobrero CE, Lauhoff C, Wegener T, Niendorf T, Krooß P (2020) On the Impact of texture and grain size on the pseudoelastic properties of polycrystalline Fe–Ni–Co–Al–Ti Alloy. Shape Mem Superelasticity 6:191–201. https://doi.org/10.1007/s40830-020-00280-4

    Article  Google Scholar 

  17. Lee D, Omori T, Han K, Hayakawa Y, Kainuma R (2018) Effect of thermomechanical Processing on texture and superelasticity in Fe–Ni-Co-Al–Ti-B alloy. Shape Mem Superelasticity 4:102–111. https://doi.org/10.1007/s40830-018-0160-5

    Article  Google Scholar 

  18. Fu H, Zhao H, Song S, Zhang Z, Xie J (2016) Evolution of the cold-rolling and recrystallization textures in FeNiCoAlNbB shape memory alloy. J Alloys Compd 686:1008–1016. https://doi.org/10.1016/j.jallcom.2016.06.273

    Article  CAS  Google Scholar 

  19. Choi WS, Pang EL, Choi PP, Schuh CA (2020) FeNiCoAlTaB superelastic and shape-memory wires with oligocrystalline grain structure. Scr Mater 188:1–5. https://doi.org/10.1016/j.scriptamat.2020.06.067

    Article  CAS  Google Scholar 

  20. Omori T, Okano M, Kainuma R (2013) Effect of grain size on superelasticity in Fe-Mn-Al-Ni shape memory alloy wire. APL Mater 10(1063/1):4820429

    Google Scholar 

  21. Ozcan H, Ma J, Wang SJ, Karaman I, Chumlyakov Y, Brown J, Noebe RD (2017) Effects of cyclic heat treatment and aging on superelasticity in oligocrystalline Fe–Mn–Al–Ni shape memory alloy wires. Scr Mater 134:66–70. https://doi.org/10.1016/j.scriptamat.2017.02.023

    Article  CAS  Google Scholar 

  22. Dippel AC, Liermann HP, Delitz JT, Walter P, Schulte-Schrepping H, Seeck OH, Franz H (2015) Beamline P021 at PETRA III for high-resolution and high-energy powder diffraction. J Synchrotron Radiat 22:675–687. https://doi.org/10.1107/S1600577515002222

    Article  CAS  Google Scholar 

  23. Bachmann F, Hielscher R, Schaeben H (2010) Texture analysis with MTEX- Free and open source software toolbox. Solid State Phenom 160:63–68. https://doi.org/10.4028/www.scientific.net/SSP.160.63

    Article  CAS  Google Scholar 

  24. Zhang C, Zhu C, Harrington T, Vecchio K (2018) Design of non-equiatomic high entropy alloys with heterogeneous lamella structure towards strength-ductility synergy. Scr Mater 154:78–82. https://doi.org/10.1016/j.scriptamat.2018.05.020

    Article  CAS  Google Scholar 

  25. Coelho RS, Klaus M, Genzel C (2014) Analysis of texture depth distribution by energy-dispersive diffraction. Mater Sci Forum 768–769:36–43. https://doi.org/10.4028/www.scientific.net/MSF.768-769.36

    Article  Google Scholar 

  26. Zhao H, Fu H, Xie J, Zhang Z (2018) Effects of solution treatment on microstructure and superelasticity of FeNiCoAlTaB alloy. Res Express Mater. https://doi.org/10.1088/2053-1591/aaa1fd

    Article  Google Scholar 

  27. Annealing R (1995) Recrystallization and related annealing phenomena. Recryst Relat Annealing Phenom. https://doi.org/10.1016/c2009-0-07986-0

    Article  Google Scholar 

  28. Zhang C, Zhu C, Cao P, Wang X, Ye F, Kaufmann K, Casalena L, MacDonald BE, Pan X, Vecchio K, Lavernia EJ (2020) Aged metastable high-entropy alloys with heterogeneous lamella structure for superior strength-ductility synergy. Acta Mater 199:602–612. https://doi.org/10.1016/j.actamat.2020.08.043

    Article  CAS  Google Scholar 

  29. Krooß P, Somsen C, Niendorf T, Schaper M, Karaman I, Chumlyakov Y, Eggeler G, Maier HJ (2014) Cyclic degradation mechanisms in aged FeNiCoAlTa shape memory single crystals. Acta Mater 79:126–137. https://doi.org/10.1016/j.actamat.2014.06.019

    Article  CAS  Google Scholar 

  30. Czerny M, Maziarz W, Cios G, Wójcik A, Chumlyakov YI, Schell N, Fitta M, Chulist R (2020) The effect of heat treatment on the precipitation hardening in FeNiCoAlTa single crystals. Mater Sci Eng A. https://doi.org/10.1016/j.msea.2020.139327

    Article  Google Scholar 

  31. Evirgen A, Ma J, Karaman I, Luo ZP, Chumlyakov YI (2012) Effect of aging on the superelastic response of a single crystalline FeNiCoAlTa shape memory alloy. Scr Mater 67:475–478. https://doi.org/10.1016/j.scriptamat.2012.06.006

    Article  CAS  Google Scholar 

  32. Tseng LW, Tzeng YC, Tsai YL, Chumlyakov Y (2021) Microstructure investigation of new iron-based FeNiCoAlTiNb shape memory alloys. Res Mater 10:100188. https://doi.org/10.1016/j.rinma.2021.100188

    Article  CAS  Google Scholar 

  33. Zhang C, Wang X, Xu M, MacDonald BE, Hong R, Zhu C, Dai X, Vecchio KS, Apelian D, Hahn H, Schoenung JM, Lavernia EJ (2021) Orientation-dependent superelasticity of a metastable high-entropy alloy. Appl Phys Lett 10(1063/5):0066130

    Google Scholar 

  34. Fu H, Zhao H, Zhang Y, Xie J (2017) Enhancement of superelasticity in Fe–Ni–Co-Based shape memory alloys by microstructure and texture control. Procedia Eng 207:1505–1510. https://doi.org/10.1016/j.proeng.2017.10.1084

    Article  CAS  Google Scholar 

  35. Sobrero CE, La Roca P, Roatta A, Bolmaro RE, Malarría J (2012) Shape memory properties of highly textured Cu–Al–Ni–(Ti) alloys. Mater Sci Eng A 536:207–215. https://doi.org/10.1016/j.msea.2011.12.104

    Article  CAS  Google Scholar 

  36. Krooß P, Holzweissig MJ, Niendorf T, Somsen C, Schaper M, Chumlyakov YI, Maier HJ (2014) Thermal cycling behavior of an aged FeNiCoAlTa single-crystal shape memory alloy. Scr Mater 81:28–31. https://doi.org/10.1016/j.scriptamat.2014.02.020

    Article  CAS  Google Scholar 

  37. Kireeva IV, Chumlyakov YI, Kirillov VA, Karaman I, Cesari E (2011) Orientation and temperature dependence of superelasticity caused by reversible γ-α′ martensitic transformations in FeNiCoAlTa single crystals. Tech Phys Lett 37:487–490. https://doi.org/10.1134/S1063785011050221

    Article  CAS  Google Scholar 

  38. Abuzaid W, Sehitoglu H (2018) Superelasticity and functional fatigue of single crystalline FeNiCoAlTi iron-based shape memory alloy. Mater Des 160:642–651. https://doi.org/10.1016/j.matdes.2018.10.003

    Article  CAS  Google Scholar 

  39. Tseng L-W, Chen C-H, Chen W-C, Cheng Y, Lu N-H (2021) Shape memory properties and microstructure of new iron-based FeNiCoAlTiNb shape memory alloys. Crystals 11:1253. https://doi.org/10.3390/cryst11101253

    Article  CAS  Google Scholar 

  40. Sobrero C, Lauhoff C, Langenkämper D, Somsen C, Eggeler G, Chumlyakov YI, Niendorf T, Krooß P (2021) Impact of test temperature on functional degradation in Fe–Ni–Co–Al–Ta shape memory alloy single crystals. Mater Lett 291:129430. https://doi.org/10.1016/j.matlet.2021.129430

    Article  CAS  Google Scholar 

  41. Tsai CY, Tseng LW, Tzeng YC, Lee PY (2022) Magnetic properties of FeNiCoAlTiNb shape memory alloys. Crystals. https://doi.org/10.3390/cryst12010121

    Article  Google Scholar 

  42. Chumlyakov YI, Kireeva IV, Pobedennaya ZV, Krooß P, Niendorf T (2021) Shape memory effect and superelasticity of [001]-oriented fenicoalnb single crystals aged under and without stress. Metals (Basel) 11:1–15. https://doi.org/10.3390/met11060943

    Article  CAS  Google Scholar 

  43. Chulist R, Prokopowicz M, Maziarz W, Ostachowski P, Schell N (2019) Effect of heat treatment on the precipitation hardening in FeNiCoAlTaB shape memory alloys. Int J Mater Res 110:70–74. https://doi.org/10.3139/146.111688

    Article  CAS  Google Scholar 

  44. Zhang C, Zhu C, Harrington T, Casalena L, Wang H, Shin S, Vecchio KS (2019) Multifunctional non-equiatomic high entropy alloys with superelastic, high damping, and excellent cryogenic properties. Adv Eng Mater 21:1–9. https://doi.org/10.1002/adem.201800941

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. Parts of this research were carried out at P02.1 and authors would like to thank Dr. Martin Etter for assistance in using the line. Beamtime was allocated for proposal I-20191495. PK acknowledges Deutsche Forschungsgemeinschaft (project ID 449930948).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Sobrero.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobrero, C., Remich, V., Cassineiro, J. et al. Functional Properties of Highly Textured Fe–Ni–Co–Al–Ti–B Shape Memory Alloy Wires. Shap. Mem. Superelasticity 9, 531–541 (2023). https://doi.org/10.1007/s40830-023-00449-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-023-00449-7

Keywords

Navigation