Skip to main content
Log in

Viewpoint: Tuning the Martensitic Transformation Mode in Shape Memory Ceramics via Mesostructure and Microstructure Design

  • TECHNICAL ARTICLE
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

The shape memory and superelastic effects are based on mechanically or thermally induced martensitic transformation. In bulk monolithic shape memory materials, these effects are characterized by a driving force threshold, such as a critical stress or a critical temperature, above which the transformation is completed within a relatively narrow window of stress or temperature. In this viewpoint article, we discuss the tuning of macroscopic martensitic transformation characteristics via mesostructure and microstructure design: with heterogeneous driving force and low nucleation barrier in meso-/micro-structured shape memory materials, especially shape memory ceramics, local transformation events can occur sequentially rather than simultaneously. This can lead to a globally continuous transformation mode without well-defined critical stress or temperature. Based on the insights from mechanics modeling and experimental evidence, we illustrate this effect in granular packings, metal matrix composites, and cellular architectures, and discuss how it may unlock new possibilities for applications involving actuation and energy dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yu HZ, Hassani-Gangaraj M, Du ZH, Gan CL, Schuh CA (2017) Granular shape memory ceramic packings. Acta Mater 132:455–466. https://doi.org/10.1016/j.actamat.2017.04.057

    Article  CAS  Google Scholar 

  2. Chowdhury P, Patriarca L, Ren G, Sehitoglu H (2016) Molecular dynamics modeling of NiTi superelasticity in presence of nanoprecipitates. Int J Plast 81:152–167. https://doi.org/10.1016/j.ijplas.2016.01.011

    Article  CAS  Google Scholar 

  3. Ogawa Y, Ando D, Sutou Y, Koike J (2016) A lightweight shape-memory magnesium alloy. Science 353(6297):368–370. https://doi.org/10.1126/science.aaf6524

    Article  CAS  Google Scholar 

  4. Tanaka Y, Himuro Y, Kainuma R, Sutou Y, Omori T, Ishida K (2010) Ferrous polycrystalline shape-memory alloy showing huge superelasticity. Science 327(5972):1488–1490. https://doi.org/10.1126/science.1183169

    Article  CAS  Google Scholar 

  5. Hofmann DC (2010) Shape memory bulk metallic glass composites. Science 329(5997):1294–1295. https://doi.org/10.1126/science.1193522

    Article  CAS  Google Scholar 

  6. Xie T (2010) Tunable polymer multi-shape memory effect. Nature 464(7286):267–270. https://doi.org/10.1038/nature08863

    Article  CAS  Google Scholar 

  7. Xie T (2011) Recent advances in polymer shape memory. Polymer 52(22):4985–5000. https://doi.org/10.1016/j.polymer.2011.08.003

    Article  CAS  Google Scholar 

  8. Reyes-Morel PE, Cherng J-S, Chen IW (1988) Transformation plasticity of CeO2-stabilized tetragonal zirconia polycrystals: II, pseudoelasticity and shape memory effect. J Am Ceram Soc 71(8):648–657. https://doi.org/10.1111/j.1151-2916.1988.tb06383.x

    Article  CAS  Google Scholar 

  9. Wang Y, Ren X, Otsuka K (2006) Shape memory effect and superelasticity in a strain glass alloy. Phys Rev Lett 97(22):225703. https://doi.org/10.1103/PhysRevLett.97.225703

    Article  CAS  Google Scholar 

  10. Casalena L, Bucsek AN, Pagan DC, Hommer GM, Bigelow GS, Obstalecki M, Noebe RD, Mills MJ, Stebner AP (2018) Structure-property relationships of a high strength superelastic NiTi–1Hf alloy. Adv Eng Mater 20(9):1800046. https://doi.org/10.1002/adem.201800046

    Article  CAS  Google Scholar 

  11. Bucsek AN, Hudish GA, Bigelow GS, Noebe RD, Stebner AP (2016) Composition, compatibility, and the functional performances of ternary NiTiX high-temperature shape memory alloys. Shape Mem Superelasticity 2(1):62–79. https://doi.org/10.1007/s40830-016-0052-5

    Article  Google Scholar 

  12. Schaedler TA, Carter WB (2016) Architected cellular materials. Annu Rev Mater Res 46(1):187–210. https://doi.org/10.1146/annurev-matsci-070115-031624

    Article  CAS  Google Scholar 

  13. Restrepo D, Mankame ND, Zavattieri PD (2015) Phase transforming cellular materials. Extreme Mech Lett 4:52–60. https://doi.org/10.1016/j.eml.2015.08.001

    Article  Google Scholar 

  14. Naebe M, Shirvanimoghaddam K (2016) Functionally graded materials: a review of fabrication and properties. Appl Mater Today 5:223–245. https://doi.org/10.1016/j.apmt.2016.10.001

    Article  Google Scholar 

  15. Ashby MF, Chapter 11—Designing Hybrid Materials, Materials Selection in Mechanical Design (4th Edition), M.F. Ashby, (Ed.), Butterworth-Heinemann, 2011, p 299–340

  16. Kazemi H, Vaziri A, Norato JA (2018) Topology optimization of structures made of discrete geometric components with different materials. J Mech Des. https://doi.org/10.1115/14040624

    Article  Google Scholar 

  17. Yan X, Huang X, Zha Y, Xie YM (2014) Concurrent topology optimization of structures and their composite microstructures. Comput Struct 133:103–110. https://doi.org/10.1016/j.compstruc.2013.12.001

    Article  Google Scholar 

  18. Asadpoure A, Tootkaboni M, Guest JK (2011) Robust topology optimization of structures with uncertainties in stiffness—Application to truss structures. Comput Struct 89(11):1131–1141. https://doi.org/10.1016/j.compstruc.2010.11.004

    Article  Google Scholar 

  19. Zhao M, Qing H, Wang Y, Liang J, Zhao M, Geng Y, Liang J, Lu B (2021) Superelastic behaviors of additively manufactured porous NiTi shape memory alloys designed with Menger sponge-like fractal structures. Mater Des 200:109448. https://doi.org/10.1016/j.matdes.2021.109448

    Article  CAS  Google Scholar 

  20. Wang Z (2019) Recent advances in novel metallic honeycomb structure. Compos Part B 166:731–741. https://doi.org/10.1016/j.compositesb.2019.02.011

    Article  Google Scholar 

  21. Meza LR, Das S, Greer JR (2014) Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345(6202):1322–1326. https://doi.org/10.1126/science.1255908

    Article  CAS  Google Scholar 

  22. Cui H, Hensleigh R, Yao D, Maurya D, Kumar P, Kang MG, Priya S, Zheng XR (2019) Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response. Nat Mater 18(3):234–241. https://doi.org/10.1038/s41563-018-0268-1

    Article  CAS  Google Scholar 

  23. Portela CM, Edwards BW, Veysset D, Sun Y, Nelson KA, Kochmann DM, Greer JR (2021) Supersonic impact resilience of nanoarchitected carbon. Nat Mater 20(11):1491–1497. https://doi.org/10.1038/s41563-021-01033-z

    Article  CAS  Google Scholar 

  24. Bauer J, Meza LR, Schaedler TA, Schwaiger R, Zheng X, Valdevit L (2017) Nanolattices: an emerging class of mechanical metamaterials. Adv Mater 29(40):1701850. https://doi.org/10.1002/adma.201701850

    Article  CAS  Google Scholar 

  25. Rauch HA, Cui H, Knight KP, Griffiths RJ, Yoder JK, Zheng X, Yu HZ (2022) Additive manufacturing of yttrium-stabilized tetragonal zirconia: progressive wall collapse, martensitic transformation, and energy dissipation in micro-honeycombs. Addit Manuf. https://doi.org/10.1016/j.addma.2022.102692

    Article  Google Scholar 

  26. Machado G, Louche H, Alonso T, Favier D (2015) Superelastic cellular NiTi tube-based materials: Fabrication, experiments and modeling. Mater Des (1980–2015) 65:212–220. https://doi.org/10.1016/j.matdes.2014.09.007

    Article  CAS  Google Scholar 

  27. Du Z, Zeng XM, Liu Q, Schuh CA, Gan CL (2016) Superelasticity in micro-scale shape memory ceramic particles. Acta Mater 123:255–263

    Article  Google Scholar 

  28. Lai A, Du Z, Gan CL, Schuh CA (2013) Shape memory and superelastic ceramics at small scales. Science 341(6153):1505–1508. https://doi.org/10.1126/science.1239745

    Article  CAS  Google Scholar 

  29. Chen Y, Schuh CA (2011) Size effects in shape memory alloy microwires. Acta Mater 59(2):537–553. https://doi.org/10.1016/j.actamat.2010.09.057

    Article  CAS  Google Scholar 

  30. Dunand DC, Müllner P (2011) Size effects on magnetic actuation in Ni-Mn-Ga shape-memory alloys. Adv Mater 23(2):216–232. https://doi.org/10.1002/adma.201002753

    Article  CAS  Google Scholar 

  31. Zhu J, Gao Y, Wang D, Zhang T-Y, Wang Y (2017) Taming martensitic transformation via concentration modulation at nanoscale. Acta Mater 130:196–207. https://doi.org/10.1016/j.actamat.2017.03.042

    Article  CAS  Google Scholar 

  32. Wang D, Hou S, Wang Y, Ding X, Ren S, Ren X, Wang Y (2014) Superelasticity of slim hysteresis over a wide temperature range by nanodomains of martensite. Acta Mater 66:349–359. https://doi.org/10.1016/j.actamat.2013.11.022

    Article  CAS  Google Scholar 

  33. Rauch HA, Yu HZ (2020) Effects of mechanical constraint on thermally induced reverse martensitic transformation in granular shape memory ceramic packings. J Appl Phys 128(24):245102. https://doi.org/10.1063/5.0035041

    Article  CAS  Google Scholar 

  34. Rauch HA, Chen Y, An K, Yu HZ (2019) In situ investigation of stress-induced martensitic transformation in granular shape memory ceramic packings. Acta Mater 168:362–375. https://doi.org/10.1016/j.actamat.2019.02.028

    Article  CAS  Google Scholar 

  35. Majmudar TS, Behringer RP (2005) Contact force measurements and stress-induced anisotropy in granular materials. Nature 435(7045):1079–1082. https://doi.org/10.1038/nature03805

    Article  CAS  Google Scholar 

  36. Tordesillas A, Tobin ST, Cil M, Alshibli K, Behringer RP (2015) Network flow model of force transmission in unbonded and bonded granular media. Phys Rev E 91(6):062204. https://doi.org/10.1103/PhysRevE.91.062204

    Article  CAS  Google Scholar 

  37. Boyd JG, Lagoudas DC (1996) A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy. Int J Plast 12(6):805–842. https://doi.org/10.1016/S0749-6419(96)00030-7

    Article  CAS  Google Scholar 

  38. COMSOL Structural Mechanics Module User’s Guide, 2020

  39. Shape Memory Alloys: Modeling and Engineering Applications, D.C. Lagoudas, (Ed.), Springer, 2008

  40. Lagoudas DC, Entchev PB (2004) Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part I: constitutive model for fully dense SMAs. Mech Mater 36(9):865–892. https://doi.org/10.1016/j.mechmat.2003.08.006

    Article  Google Scholar 

  41. Lagoudas DC, Entchev PB, Popov P, Patoor E, Brinson LC, Gao XJ (2006) Shape memory alloys, Part II: Modeling of polycrystals. Mech Mater 38(5–6):430–462. https://doi.org/10.1016/j.mechmat.2005.08.003

    Article  Google Scholar 

  42. Reyes-Morel PE, Chen I-W (1988) Transformation plasticity of CeO2-Stabilized tetragonal zirconia polycrystals: I, stress assistance and autocatalysis. J Am Ceram Soc 71(5):343–353. https://doi.org/10.1111/j.1151-2916.1988.tb05052.x

    Article  CAS  Google Scholar 

  43. Du Z, Zeng XM, Liu Q, Lai A, Amini S, Miserez A, Schuh CA, Gan CL (2015) Size effects and shape memory properties in ZrO2 ceramic micro- and nano-pillars. Scripta Mater 101:40–43. https://doi.org/10.1016/j.scriptamat.2015.01.013

    Article  CAS  Google Scholar 

  44. Maran S, Masters IG, Gibbons GJ (2020) Additive manufacture of 3D auxetic structures by laser powder bed fusion—Design influence on manufacturing accuracy and mechanical properties. Appl Sci. https://doi.org/10.3390/app10217738

    Article  Google Scholar 

  45. Arghavani J, Auricchio F, Naghdabadi R, Reali A, Sohrabpour S (2010) A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings. Int J Plast 26(7):976–991. https://doi.org/10.1016/j.ijplas.2009.12.003

    Article  CAS  Google Scholar 

  46. Auricchio F (2001) A robust integration-algorithm for a finite-strain shape-memory-alloy superelastic model. Int J Plast 17(7):971–990. https://doi.org/10.1016/S0749-6419(00)00050-4

    Article  Google Scholar 

  47. Auricchio F, Petrini L (2004) A three-dimensional model describing stress-temperature induced solid phase transformations: solution algorithm and boundary value problems. Int J Numer Methods Eng 61(6):807–836. https://doi.org/10.1002/nme.1086

    Article  Google Scholar 

  48. Ahadi A, Sun Q (2014) Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi. Acta Mater 76(2014):186–197

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support from the National Science Foundation (NSF) (No. CMMI-1853893). This work was performed in part at the Nanoscale Characterization and Fabrication Laboratory, which is supported by the Virginia Tech National Center for Earth and Environmental Nanotechnology Infrastructure (NanoEarth), a member of the National Nanotechnology Coordinated Infrastructure (NNCI), supported by NSF (ECCS 1542100 and ECCS 2025151).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Z. Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is an invited submission to Shape Memory and Superelasticity selected from presentations at the Shape Memory and Superelastic Technology Conference and Exposition (SMST2022) held May 16–20, 2022 at The Westin Carlsbad Resort, San Diego, California and has been expanded from the original presentation. The issue was organized by Dr. Srinidhi Nagaraja, G.RAU, Inc. and Dr. Ashley Bucsek, University of Michigan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erb, D.J., Rauch, H.A., Knight, K.P. et al. Viewpoint: Tuning the Martensitic Transformation Mode in Shape Memory Ceramics via Mesostructure and Microstructure Design. Shap. Mem. Superelasticity 9, 116–126 (2023). https://doi.org/10.1007/s40830-023-00430-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-023-00430-4

Keywords

Navigation