Skip to main content
Log in

Intriguing minerals: lorandite, TlAsS2, a geochemical detector of solar neutrinos

  • Lecture Text
  • Published:
ChemTexts Aims and scope Submit manuscript

Abstract

This lecture text demonstrates how the mineral lorandite is used as a detector of solar neutrinos. Because the age of the lorandite deposit in Allchar, North Macedonia, is known, this opened the possibility to determine the solar neutrino flux over the last 4.3 million years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jovanovski G, Boev B, Makreski P (2012) Minerals from the Republic of Macedonia with an introduction to mineralogy. Macedonian Academy of Sciences and Arts, Skopje

    Google Scholar 

  2. Jovanovski G, Boev B, Stafilov T, Makreski P, Matevski V, Boev I (2018) Allchar—a world natural heritage. Macedonian Academy of Sciences and Arts, Skopje

    Google Scholar 

  3. Krenner J (1894) A Lorándit új ásványfaj (Lorandite—a new mineral). Mat Termés Ért 12:473 (in Hungarian)

    Google Scholar 

  4. Krenner JS (1895) Lorandit uj thallium-ásvány Allcharról Makedoniában (II tábla) (Lorandite—a new thallium mineral from Allchar in Macedonia (2 tables)). Mat Termés Ért 13:258–263 (in Hungarian)

    Google Scholar 

  5. Krenner JS (1897) Lorandit ein neues Thallium-mineral von Allchar in Macedonien (Lorandite, a new thallium mineral from Allchar in Macedonia). Z Kristallog 27:98–99

    Google Scholar 

  6. Loczka J (1904) Chemische Analyse des Lorandit von Allchar in Macedonien und des Claudetit von Szomolnok in Ungaria (Chemical analysis of lorandite from Allchar, Macedonia and of claudetite from Szomolnok in Hungary). Z Kristallog 39:520–525

    CAS  Google Scholar 

  7. Goldschmidt V (1899) Über Lorándit von Allchar in Macedonien (On lorandite from Allchar in Macedonia). Z Kristallog 30:272–294

    Google Scholar 

  8. Lj Barić (1958) Neuuntersuchungen des Loránditvorkommens von Mazedonien. Vergleich der Mineralvergesellschaftungen in den beiden bisher unbekannten Fundorten des Lorándits (New studies of the lorandite deposits in Macedonia. Comparison of the mineral paragenesis at the two hitherto unknown deposits of lorandite). Schweizer Miner Petrogr Mitt 38:247–253

    Google Scholar 

  9. Jannasch P (1904) Analyse des Lorandit von Allchar (Analysis of lorandite from Allchar). Kristallog 39:122–124

    CAS  Google Scholar 

  10. Palme H, Pavićević MK, Spettel B (1988) Major and trace elements in some minerals and ore from Crven Dol Allchar. Nucl Instr Meth Phys Res A 271:314–319

    Article  Google Scholar 

  11. Boev B, Stojanov R, Denkovski G (1993) Geology of Allchar polymetallic deposit Macedonia. Geol Maced 7:35–39

    Google Scholar 

  12. Lazaru A, Stafilov T (1993) Determination of Fe Mn Cu Cr and Ni in some minerals from the Alšar mine by atomic absorption spectrometry. Geol Maced 7:73–80

    Google Scholar 

  13. Frantz E, Palme H, Todt W, El Goresy A, Pavićević MK (1994) Geochemistry of Tl–As minerals and host rocks at Allchar (Macedonia). N Jb Miner Abh 167:359–399

    CAS  Google Scholar 

  14. Petrov B, Andonova D, Stafilov T, Novakovski T (1994) Possibility of concentrating the thallium mineral lorandite from the Allchar deposit Crven Dol region. N Jb Miner Abh 167:413–420

    CAS  Google Scholar 

  15. Stafilov T, Aleksovska S, Jordanovska V (1994) Determination of lead in lorandite and marcasite from Allchar by electrothermal atomic absorption spectrometry. N Jb Miner Abh 167:401–408

    CAS  Google Scholar 

  16. Lazaru A, Stafilov T (1998) Determination of copper in sulfide minerals by Zeeman electrothermal atomic absorption spectrometry. Fresenius J Anal Chem 360:726–728

    Article  CAS  Google Scholar 

  17. Trajkovska M, Šoptrajanov B, Stafilov T, Jovanovski G (1993) Determination of lorandite and realgar in mineral mixtures using infrared spectroscopy. Geol Maced 7:55–59

    Google Scholar 

  18. Šoptrajanov B, Trajkovska M, Jovanovski G, Stafilov T (1994) Infrared spectra of lorandite and some other minerals from Alšar. N Jb Miner Abh 167:329–337

    Google Scholar 

  19. Makreski P, Jovanovski G, Boev B (2014) Micro-Raman spectra of extremely rare and endemic Tl-sulfosalts from Allchar deposit. J Raman Spectrosc 45:610–617

    Article  CAS  Google Scholar 

  20. Pavićević M, Bosch F, Amthauer G, Aničin I, Boev B, Bruchle W, Djurćić Z, Faestermann T, Henning W, Jelenković R, Pejović V (2010) New data for the geochemical determination of the solar pp-neutrino flux by means of lorandite mineral. Nucl Instr Meth Phys Res A 621:278–285

    Article  Google Scholar 

  21. Neutrino detectors and sources (2014) Worwick University, Warwick. https://warwick.ac.uk/fac/sci/physics/staff/academic/boyd/stuff/neutrinolectures/lec_neutrinodetectors_writeup.pdf. Accessed 21 March 2019

  22. Bahcall JN (2001) How many σ’s is the solar neutrino effect? Phys Rev C 65:015802–1–015802-7

    Article  Google Scholar 

  23. Neubauer F, Pavićević MK, Genser J, Jelenković R, Boev B, Amthauer G (2009) 40Ar/39Ar dating of geological events of the Allchar deposit and its host rock. Geochim Cosmochim Acta 73(suppl 1A):938

    Google Scholar 

  24. Freedman MS, Stevens CM, Horwitz EP, Fuchs LH, Lerner JL, Goodman LS, Childs WJ, Hessler J (1976) Solar neutrinos: proposal for a new test. Science 193:117–119

    Article  Google Scholar 

  25. Pavićević MK, Amthauer G, Cvetković V, Boev B, Pejović V, Henning WF, Bosch F, Litvinov YA, Wagner R (2018) Lorandite from Allchar as geochemical detector for pp-solar neutrinos. Nucl Instrum Methods Phys Res A 895:62–73

    Article  Google Scholar 

  26. Doménech-Carbó A (2015) Dating: an analytical task. ChemTexts 1:5

    Article  Google Scholar 

  27. Geyh MA, Schleicher H (1990) Absolute age determination—physical and chemical dating methods and their application. Springer, Berlin

    Book  Google Scholar 

  28. Pauli W (1930) Letter reprinted in neutrino physics. Cambridge University Press, Cambridge, p 1990

    Google Scholar 

  29. Fermi E (1934) Versuch einer theorie der β-strahlen. (Attempt of a theory of β-rays). Z Phys 88:161–171

    Article  CAS  Google Scholar 

  30. Rodeback GW, Allen GS (1952) Neutrino recoils following the capture of orbital electrons in A37. Phys Rev 86:446–450

    Article  CAS  Google Scholar 

  31. Cowan CL Jr, Reines F, Harrison FB, Kruse HW, McGuire AD (1956) Detection of the free neutrino: a confirmation. Science 124:103–104

    Article  CAS  Google Scholar 

  32. Reines F, Cowan CL (1956) The neutrino. Nature 178:446–449

    Article  CAS  Google Scholar 

  33. Bellerive A (2003) Review of solar neutrino experiments. arXiv: 0312045

  34. Rowley JK, Cleveland BT, Davis Jr R, Hampel W, Kirsten T (1980) The present and past neutrino luminosity of the Sun. Conference on Ancient Sun, Pergamon Press, New York, 45–62

  35. Davis R Jr (1964) Solar neutrinos. II Experimental. Phys Rev Lett 13:303–305

    Article  Google Scholar 

  36. Davis R Jr, Harmer DS, Hoffman KC (1968) A search for neutrinos from the Sun. Phys Rev Lett 20:1205–1209

    Article  CAS  Google Scholar 

  37. Ianni A (2014) Solar neutrinos and the solar model. Phys Dark Univ 4:44–49

    Article  CAS  Google Scholar 

  38. Bahcall JN, Davis R Jr (1976) Solar neutrinos: a scientific puzzle. Science 191:264–267

    Article  CAS  Google Scholar 

  39. Pavićević MK (1994) The “LOREX”-Project solar neutrino detection with the mineral lorandite. N Jb Miner Abh 167:205–245

    Google Scholar 

  40. Pavićević M, Amthauer G (2012–2015) Geochemische und physikalische Untersuchungen im LOREX-Project II P25084 (Geochemical and physical studies of the LOREX project II P25084). Fonds zur Förderung der Wissenschaftlichen Forschung (FWF) Gebiete: Physik Mechanik Astronomie. Wien

  41. Fukuda Y et al (1998) Measurements of the solar neutrino flux from Super-Kamiokande’s first 300 days. Phys Rev Lett 81:1158–1162

    Article  CAS  Google Scholar 

  42. McDonald AB, Collaboration SNO (2013) SNO and future solar neutrino experiments. Nucl Phys B Proc Suppl 235–236:61–67

    Article  Google Scholar 

  43. Pontecorvo B (1967) Neutrino experiments and the question of the leptonic charge conservation. Z Theor Exp Phys 53:1717–1725

    CAS  Google Scholar 

  44. Cлyжбeн вecник нa Peпyбликa Maкeдoниja (Official Gazette of the Republic of Macedonia) (2009) Зaкoн зa пpoглacyвaњe нa лoкaлитeтoт Aлшap зa cпoмeник нa пpиpoдaтa (Law for proclamation of the Allchar locality as the monument of the nature) 83: 8 (in Macedonian)

  45. Cлyжбeн вecник нa Peпyбликa Maкeдoниja (Official Gazette of the Republic of Macedonia) (2012) Зaкoн зa пpoглacyвaњe нa пpecтaнoк нa вaжeњeтo нa зaкoнoт зa пpoглacyвaњe нa лoкaлитeтoт Aлшap зa cпoмeник нa пpиpoдaтa (Law for the proclamation of ceasing of the existence of the Low for proclamation of the Allchar locality as the monument of the nature). 59: 17 (in Macedonian)

  46. Janković S, Boev B, Serafimovski T (1997) Magmatism and tertiary mineralization of the Kožuf metalogenetic district the Republic of Macedonia with particular reference to the Allchar Deposit. Faculty of Mining and Geology—Štip 5:1–262

  47. Janković S, Jelenković R (1994) Thallium mineralization in the Allchar Sb–As–Tl–Au deposit. N Jb Miner Abh 167:283–297

    Google Scholar 

  48. Pavićević MK (1988) Lorandite from Allchar—a low energy solar neutrino dosimeter. Nucl Instr Meth Phys Res A 271:287–296

    Article  Google Scholar 

  49. Pavićević MK, El Goresy A (1988) Crven Dol Tl deposit in Allchar: mineralogical investigations chemical composition of Tl minerals and genetic implications. Nucl Instr Meth Phys Res A 271:297–300

    Article  Google Scholar 

  50. Troesch M, Frantz E (1992) 40Ar/39Ar Alter der Tl-As Mine von Crven Dol Allchar (Macedonien) (40Ar/39Ar age of the Tl-As mine of Crven Dol Allchar (Macedonia)). Beihefte Eur J Miner 4:276

    Google Scholar 

  51. von Blanckenburg F (2006) The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth Planet Sci Lett 237:462–479

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gligor Jovanovski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jovanovski, G., Boev, B., Makreski, P. et al. Intriguing minerals: lorandite, TlAsS2, a geochemical detector of solar neutrinos. ChemTexts 5, 12 (2019). https://doi.org/10.1007/s40828-019-0086-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40828-019-0086-3

Keywords

Navigation