Skip to main content
Log in

Applied Catalysis in the Automotive Industry: Development of a Commercial Diesel Oxidation Catalyst Simulation Model Balanced for the Requirements of an Original Engine Manufacturer. Part 2, CO and HC Chemistry

  • Published:
Emission Control Science and Technology Aims and scope Submit manuscript

Abstract

Our previously developed model of NOx chemistry over a commercially used diesel oxidation catalyst has been extended by adding CO and HC chemistry. Synthetic gas bench experiments were conducted in order to elucidate mechanisms and provide the experimental foundation necessary for model calibration. Reactions tested and folded into the model include pure gas-phase CO oxidation, water-gas shift, and surface oxidation reactions for CO and HC. The majority of the experiments were performed at a space velocity corresponding to medium load in terms of driving conditions. The complete model was validated against engine test data. For that, it was necessary to assess the aging of the catalyst (in modeling terms translated to precious metal dispersion) used in the engine tests. After assuming a reasonable dispersion using engineering judgment, model validation against engine test data was performed. This showed the ability of the model to predict both trends and time resolved details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

EATS :

Engine aftertreatment system

DOC :

diesel oxidation catalyst

HC :

hydro carbon (non combusted fuel)

SCR :

selective catalytic reduction

SGB :

synthetic gas bench

TPD :

temperature programmed desorption

References

  1. Blomgren, F., Shwan, S., Carlhammar, L., Milh, M.: Applied catalysis in the automotive industry exemplified through balancing model accuracy and usability when creating a simulation model of a commercial diesel oxidation catalyst. Part 1, NOx-chemistry. submitted to Emission Control Science and Technology

  2. Voltz, S.E., Morgan, C.R., Liederman, D., Jacob, S.M.: Kinetic study of carbon monoxide and propylene oxidation on platinum catalysts. Ind. Eng. Chem. Prod. Res. Dev. 12(4), 294–301 (1973)

    Article  Google Scholar 

  3. Keren, I., Sheintuch, M.: Modeling and analysis of spatiotemporal oscillatory patterns during CO oxidation in the catalytic converter. Chem Eng. Sci. 55(8), 1461–1475 (2000)

    Article  Google Scholar 

  4. Salomons, S., Hayes, R.E., Votsmeier, M., Drochner, A., Vogel, H., Malmberg, S., Gieshoff, J.: On the use of mechanistic CO oxidation models with a platinum monolith catalyst. Appl. Catal. B: Environ. 70(1–4), 305–313 (2007)

    Article  Google Scholar 

  5. Carlsson, P.A., Österlund, L., Thormahlen, P., Palmqvist, A.E.C., Fridell, E., Jansson, J., Skoglundh, M.: A transient in situ FTIR and XANES study of CO oxidation over Pt/AlO catalysts. J. Catal. 226(2), 422–434 (2004)

    Article  Google Scholar 

  6. Langmuir, I.: Part II.—“Heterogeneous reactions”. Chemical reactions on surfaces. Trans. Far. Soc. 17(0), 607–654 (1922)

    Article  Google Scholar 

  7. Schwartz, A., Holbrook, L.L., Wise, H.: Catalytic oxidation studies with platinum and palladium. J. Catal. 21(2), 199–207 (1971)

    Article  Google Scholar 

  8. Ordóñez, S., Bello, L., Sastre, H., Rosal, R., Dı́ez, F.V.: Kinetics of the deep oxidation of benzene, toluene, n-hexane and their binary mixtures over a platinum on γ-alumina catalyst. Appl. Catal. B Environ. 38(2), 139–149 (2002)

    Article  Google Scholar 

  9. Ma, L., Bart, H., Ning, P., Zhang, A., Wu, G., Zengzang, Z.: Kinetic study of three-way catalyst of automotive exhaust gas: modeling and application. Chem. Eng. J. 155(1–2), 241–247 (2009)

    Article  Google Scholar 

  10. Patterson, M.J., Angove, D.E., Cant, N.W.: The effect of carbon monoxide on the oxidation of four C6 to C8 hydrocarbons over platinum, palladium and rhodium. Appl. Catal. B Environ. 26(1), 47–57 (2000)

    Article  Google Scholar 

  11. Watling, T.C., Ahmadinejad, M., Ţuţuianu, M., Johansson, Å., Paterson, M.A.J.: SAE Int. J.. Eng. 5, 1420–1442 (2012)

    Article  Google Scholar 

  12. Khosravi, M., Sola, C., Abedi, A., Hayes, R.E., Epling, W.S., Votsmeier, M.: Oxidation and selective catalytic reduction of NO by propene over Pt and Pt:Pd diesel oxidation catalysts. Appl. Catal. B Environ. 147, 264–274 (2014)

    Article  Google Scholar 

  13. Karakaya, C., Deutschmann, O.: A simple method for CO chemisorption studies under continuous flow: adsorption and desorption behavior of Pt/Al2O3 catalysts. Appl. Catal. A Gen. 445-446, 221–230 (2012)

    Article  Google Scholar 

  14. Ertl, G., Norton, G.P.R., Rüstig, J.: Phys. Rev. Lett. 49(2), 177–180 (1982)

    Article  Google Scholar 

  15. Ladas, S., Imbihl, R., Ertl, G.: Kinetic oscillations during the catalytic CO oxidation on Pd(110): the role of subsurface oxygen. Surf. Sci. 219(1–2), 88–106 (1989)

    Article  Google Scholar 

  16. Yuranov, I., Kiwi-Minsker, L., Slin’ko, M., Kurkina, E., Tolstunova, E.D., Ranken, A.: Chem. Eng. Sci. 55(15), 2827–2833 (2000)

    Article  Google Scholar 

  17. Gorodetskii, V.V., Matveev, A.V., Kalinkin, A.V., Nieuwenhyys, B.E.: Chem. Sust. Dev. 11, 67–74 (2003)

    Google Scholar 

  18. Hendriksen, B.L.M., Bobaru, S.C., Franken, J.W.M.: Oscillatory CO oxidation on Pd(100) studied with in situ scanning tunneling microscopy. Surf. Sci. 552(1-3), 229–242 (2004)

    Article  Google Scholar 

  19. Imbihl, R.: Fundamental aspects of heterogeneous catalysis studied by Particle Beams. 265(26), 125–131 (1992)

  20. Bzovska, I.S., Mryglod, I.M.: Cond. Mat. Phys. 13, 1–5 (2010)

    Google Scholar 

  21. Ramanathan, K., Sharma, C.S.: Kinetic parameters estimation for three way catalyst modeling. Ind. Eng. Chem. Res. 50(17), 9960–9979 (2011)

    Article  Google Scholar 

  22. Fernandes, V.R., Bossche, M.V., Knudsen, J., Farstad, M.H., Gustafson, J., Venvik, H.J., Grönbeck, H., Borg, A.: Reversed hysteresis during CO oxidation over Pd75Ag25(100). ACS Catal. 6(7), 4154–4161 (2016)

    Article  Google Scholar 

  23. Chambers, D.C., Angove, D.E., Cant, N.W.: J. Catal. 204, 11–22 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredrik Blomgren.

Ethics declarations

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blomgren, F., Shwan, S., Carlhammar, L. et al. Applied Catalysis in the Automotive Industry: Development of a Commercial Diesel Oxidation Catalyst Simulation Model Balanced for the Requirements of an Original Engine Manufacturer. Part 2, CO and HC Chemistry. Emiss. Control Sci. Technol. 5, 69–85 (2019). https://doi.org/10.1007/s40825-019-0110-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40825-019-0110-5

Keywords

Navigation