Skip to main content

Advertisement

Log in

Real-World NO X Emissions of Transit Buses Equipped with Diesel Exhaust Aftertreatment Systems

  • Published:
Emission Control Science and Technology Aims and scope Submit manuscript

Abstract

In this work, we compare nitrogen oxide (NO X ) emissions from vehicles equipped with 2013 and 2015 model year (MY) diesel engines and exhaust aftertreatment, both certified to the same emissions standards, over a variety of real-world drive cycles. Our study concludes that 2013MY and 2015MY buses achieved real-world NO X conversion efficiencies of 75 and 95%, respectively. Engine-out NO X levels remained unchanged between the two busses when driven over the same transit bus routes. Therefore, emissions reductions are attributed to greater NO X conversion efficiency by the exhaust aftertreatment system, especially in low catalyst temperature and transient response scenarios. Although it is likely that other transit buses and vocational vehicles will express different characteristics based on their specific operating conditions and powertrain setup; our results show that improvements to aftertreatment systems, in the areas of catalyst activity, aftertreatment controls, and urea dosing strategy can significantly reduce NO X emissions over the investigated real-world drive cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Grewe, V., Dahlmann, K., Matthes, S., Steinbrecht, W.: Attributing ozone to NOx emissions: implications for climate mitigation measures. Atmos. Environ. 59, 102–107 (2012). doi:10.1016/j.atmosenv.2012.05.002

    Article  Google Scholar 

  2. US EPA, OAR, OAQPS (2014) Health | Nitrogen Dioxide | US EPA. In: Air Radiat. http://www.epa.gov/airquality/nitrogenoxides/health.html. Accessed 1 Dec 2014

  3. Girard, J., Cavataio, G., Snow, R., Lambert, C.: Combined Fe-cu SCR systems with optimized ammonia to NOx ratio for diesel NOx control. SAE IntJFuels Lubr. 1, 603–610 (2008). doi:10.4271/2008-01-1185

    Article  Google Scholar 

  4. Munnannur, A., Chiruta, M., Liu, Z.G.: Thermal and fluid dynamic considerations in aftertreatment system design for SCR solid deposit mitigation. SAE Tech Pap. (2012). doi:10.4271/2012-01-1287

    Google Scholar 

  5. Herman, A., Wu, M.-C., Cabush, D., Shost, M.: Model based control of SCR dosing and OBD strategies with feedback from NH 3 sensors. SAE Int J Fuels Lubr. 2, 375–385 (2009). doi:10.4271/2009-01-0911

    Article  Google Scholar 

  6. Narayanaswamy K, He Y (2008) Modeling of Copper-Zeolite and Iron-Zeolite Selective Catalytic Reduction (SCR) Catalysts at Steady State and Transient Conditions. SAE Int. 2008-01-0615

  7. Koebel, M., Elsener, M., Kleemann, M.: Urea-SCR: a promising technique to reduce NOx emissions from automotive diesel engines. Catal. Today. 59, 335–345 (2000). doi:10.1016/S0920-5861(00)00299-6

    Article  Google Scholar 

  8. Girard, J., Snow, R., Cavataio, G., Lambert, C.: The influence of ammonia to NOX ratio on SCR performance. SAE Tech Pap. 2007-01-1581 (2007). doi:10.4271/2007-01-1581

  9. Klingstedt, F., Arve, K., Murzin, D.Y.U.: Toward improved catalytic low-temperature NO x removal in diesel-powered vehicles. Acc. Chem. Res. 39, 273–282 (2006). doi:10.1021/ar050185k

    Article  Google Scholar 

  10. Koebel, M., Elsener, M., Madia, G.: Reaction pathways in the selective catalytic reduction process with NO and NO2 at low temperatures. Ind. Eng. Chem. Res. 40, 52–59 (2001). doi:10.1021/ie000551y

    Article  Google Scholar 

  11. Ettireddy, P.R., Kotrba, A., Spinks, T., et al.: Development of low temperature selective catalytic reduction (SCR) catalysts for future emissions regulations. SAE Tech Pap. 2014-01-1520 (2014). doi:10.4271/2014-01-1520

  12. Kang, M., Park, E.D., Kim, J.M., Yie, J.E.: Cu-Mn mixed oxides for low temperature NO reduction with NH3. Catal. Today. 111, 236–241 (2006). doi:10.1016/j.cattod.2005.10.032

    Article  Google Scholar 

  13. Kang, M., Park, E.D., Kim, J.M., Yie, J.E.: Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Appl. Catal. A Gen. 327, 261–269 (2007). doi:10.1016/j.apcata.2007.05.024

    Article  Google Scholar 

  14. Peña, D.A., Uphade, B.S., Smirniotis, P.G.: TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3: I. Evaluation and characterization of first row transition metals. J. Catal. 221, 421–431 (2004). doi:10.1016/j.jcat.2003.09.003

    Article  Google Scholar 

  15. Yoshikawa, M., Yasutake, A., Mochida, I.: Low-temperature selective catalytic reduction of NO(x) by metal oxides supported on active carbon fibers. Appl Catal a-General. 173, 239–245 (1998)

    Article  Google Scholar 

  16. Tang, X., Hao, J., Yi, H., Li, J.: Low-temperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts. Catal. Today. 126, 406–411 (2007). doi:10.1016/j.cattod.2007.06.013

    Article  Google Scholar 

  17. Chi, J.N., Dacosta, H.F.M.: Modeling and control of a urea-SCR aftertreatment system reprinted from: diesel exhaust emission control modeling. SAE Tech Pap. 2005-01-0966 114, 449–464 (2005)

    Google Scholar 

  18. Chavannavar, P.: Development and implementation of a mapless, model based SCR control system. SAE Int. J. Engines. 7, 1113–1124 (2014). doi:10.4271/2014-01-9050

    Article  Google Scholar 

  19. Muncrief, R.L., Rooks, C.W., Cruz, M., Harold, M.P.: Combining biodiesel and exhaust gas recirculation for reduction in NOx and particulate emissions. Energy and Fuels. 22, 1285–1296 (2008). doi:10.1021/ef700465p

    Article  Google Scholar 

  20. Johnson, D.R., Bedick, C.R., Clark, N.N., Mckain, D.L.: Design and testing of an independently controlled urea SCR retrofit system for the reduction of NOx emissions from marine diesels. Environ Sci Technol. 43, 3959–3963 (2009). doi:10.1021/es900269p

    Article  Google Scholar 

  21. Herner, J.D., Hu, S., Robertson, W.H., et al.: Effect of advanced aftertreatment for PM and NOx reduction on heavy-duty diesel engine ultrafine particle emissions. Environ Sci Technol. 45, 2413–2419 (2011). doi:10.1021/es102792y

    Article  Google Scholar 

  22. Herner, J.D., Hu, S., Robertson, W.H., et al.: Effect of advanced aftertreatment for PM and NOx control on heavy-duty diesel truck emissions. Environ Sci Technol. 43, 5928–5933 (2009). doi:10.1021/es9008294

    Article  Google Scholar 

  23. Yao, C., Cheung, C.S., Cheng, C., Wang, Y.: Reduction of smoke and NOx from diesel engines using a diesel/methanol compound combustion system. Energy and Fuels. 21, 686–691 (2007). doi:10.1021/ef0602731

    Article  Google Scholar 

  24. Jeon, J., Lee, J.T., Park, S.: Nitrogen compounds (NO, NO2, N2O, and NH3 ) in NOx emissions from commercial EURO VI type heavy-duty diesel engines with a urea-selective catalytic reduction system. Energy Fuel. 30, 6828–6834 (2016). doi:10.1021/acs.energyfuels.6b01331

    Article  Google Scholar 

  25. Kotz, A.J., Kittelson, D.B., Northrop, W.F.: Lagrangian hotspots of in-use NOx emissions from transit buses. Environ Sci Technol. 50, 5750–5756 (2016). doi:10.1021/acs.est.6b00550

    Article  Google Scholar 

  26. Wu, Y., Zhang, S.J., Li, M.L., et al.: The challenge to NOx emission control for heavy-duty diesel vehicles in China. Atmos. Chem. Phys. 12, 9365–9379 (2012). doi:10.5194/acp-12-9365-2012

    Article  Google Scholar 

  27. Misra, C., Collins, J.F., Herner, J.D., et al.: In-use NOx emissions from model year 2010 and 2011 heavy-duty diesel engines equipped with aftertreatment device. Environ Sci Technol. 47, 7892–7898 (2013) doi: 10.1021/es4006288

    Article  Google Scholar 

  28. Posada F, Bandivadekar A (2015) Global overview of on-board diagnostic (OBD) systems for heavy-duty vehicles. In: Int. Counc. Clean Transp. http://www.theicct.org/sites/default/files/publications/ICCT_Overview_OBD-HDVs_20150209.pdf.

  29. Stanton, D.W.: Systematic development of highly efficient and clean engines to meet future commercial vehicle greenhouse gas regulations. SAE Int. 2013-01-2421 (2013). doi:10.4271/2013-01-2421

  30. U.S. Environmental Protection Agency (2008) Regulations Requiring Onboard Diagnostic Systems on 2010 and Later Heavy-Duty Engines Used in Highway Vehicles Over 14,000 Pounds; Revisions to Onboard Diagnostics Requirements for Diesel Highway Vehicles Under 14,000 Pounds.

  31. Zhang, H., Wang, J., Wang, Y.-Y.: Removal of NOx sensor ammonia cross sensitivity from contaminated measurements in diesel-engine selective catalytic reduction systems. Fuel. 150, 448–456 (2015). doi:10.1016/j.fuel.2015.02.053

    Article  Google Scholar 

  32. Zhang, H., Wang, J.: NOx sensor ammonia-cross-sensitivity factor estimation in diesel engine selective catalytic reduction systems. J. Dyn. Syst. Meas. Control. 137, 61015 (2015). doi:10.1115/1.4029347

    Article  Google Scholar 

  33. Hsieh M-F (2010) Control of Diesel Engine Urea Selective Catalytic Reduction Systems.

  34. Sensors Inc (2011) SEMTECH - DS. www.sensors-inc.com. Accessed 5 Mar 2017

  35. O’Keefe, M.P., Simpson, A., Kelly, K.J., Pedersen, D.S.: Duty cycle characterization and evaluation towards heavy hybrid vehicle applications. SAE Tech Pap. 2007-01-0302 (2007). doi:10.4271/2007-01-0302

  36. Society of Automotive Engineers (2012) J1939-71 Vehicle Application layer. SAE Int. J1939–71

Download references

Acknowledgments

The authors would like to acknowledge Twin Cities Metro Transit for allowing data collection from in-service transit buses, installing data logging equipment, and for providing access to bus route information. In particular, we would like to acknowledge David Haas at Metro Transit for his critical assistance in coordinating bus schedules and providing technical guidance on this project. We would also like to recognize Cummins Emission Solutions for funding this research and for providing insight and technical assistance throughout the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William F. Northrop.

Ethics declarations

The authors declare that they have no competing interests.

Funding

This work was funded in part by Cummins Emission Solutions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotz, A.J., Kittelson, D.B., Northrop, W.F. et al. Real-World NO X Emissions of Transit Buses Equipped with Diesel Exhaust Aftertreatment Systems. Emiss. Control Sci. Technol. 3, 153–160 (2017). https://doi.org/10.1007/s40825-017-0064-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40825-017-0064-4

Keywords

Navigation