Skip to main content

Advertisement

Log in

Bioconvective Applications of Unsteady Slip Flow Over a Tangent Hyperbolic Nanoliquid with Surface Heating: Improving Energy System Performance

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The gyrotactic microorganisms in nanofluid is necessary in many engineering and industrial systems. Also, stretching surface plays a significant role in the acceleration of thermal energy. Our motive in the current study is to present the numerical simulation of bioconvective flow of tangent hyperbolic nanofluid over a stretching surface with velocity slip and convective boundary condition. The tangent hyperbolic nanoliquid having motile density. The mathematical model for the current flow problem is transformed into a non-dimensional expression using suitable variables. The developed model is formulated for these transformed equations through the Matlab bvp4c method. Engineering interest quantities such as friction factor, heat, mass and microorganism density were obtained against different physical variables. The results have observed that the heat transfer rate and motile microorganism density diminished while increasing the Weissenberg number, the opposite trend is found for mass transfer rate and skin friction. The accuracy of the current result has been shown excellent reliability in contrast to the previous literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The raw data supporting the conclusions of this article will be made available by the corresponding author without undue reservation.

Abbreviations

\(t\) :

Time, Sec

\(\mathrm{We}\) :

Weissenberg number, Dimensionless

\(M\) :

Magnetic parameter, Dimensionless

\(n\) :

Power index number, Dimensionless

\(A\) :

Unsteady parameter, Dimensionless

\(\mathrm{Nb}\) :

Brownian motion parameter, Dimensionless

\(\mathrm{Nt}\) :

Thermophoresis parameter, Dimensionless

\(\mathrm{Pr}\) :

Prandtl number, Dimensionless

\(\mathrm{Bi}\) :

Biot number, Dimensionless

\(\mathrm{Sc}\) :

Schmidt number, Dimensionless

\(\mathrm{Lb}\) :

Bioconvection Lewis number, Dimensionless

\(\mathrm{Pe}\) :

Bioconvection Peclet number, Dimensionless

\({C}_{f}\) :

Skin friction coefficient, Dimensionless

\({\mathrm{Nu}}_{x}\) :

Nusselt number, Dimensionless

\({\mathrm{Sh}}_{x}\) :

Sherwood number, Dimensionless

\({\mathrm{Nn}}_{x}\) :

Microorganism density number, Dimensionless

\(f\) :

Dimensionless velocity profile, Dimensionless

\(\theta \) :

Dimensionless temperature profile, Dimensionless

\(\phi \) :

Dimensionless concentration profile, Dimensionless

\(\psi \) :

Dimensionless microorganism profile, Dimensionless

\(\varpi \) :

Microorganism concentration difference parameter, Dimensionless

\(\eta \) :

Similarity variable, Dimensionless

\(\chi \) :

Stream function, \({\text{m}} {\text{s}}^{ - 1}\)

\(\lambda \) :

Slip parameter, Dimensionless

\(\Gamma \) :

Time material constant, Dimensionless

\(u,v\) :

Components of velocity along \(x, y\)direction, \(\mathrm{m}{ \mathrm{s}}^{-1}\)

\(\tau \) :

Ratio of the effective heat capacity, Dimensionless

\(\upsilon \) :

Kinematic viscosity, \({\mathrm{m}}^{2} {\mathrm{s}}^{-1}\)

\(c\) :

Stretching rate, \({\mathrm{s}}^{-1}\)

\(\rho \) :

Density, \({\text{kgm}}^{ - 1}\)

\({C}_{p}\) :

Specific heat, \({\text{J}} {\text{kg}}^{ - 1} {\text{K}}^{ - 1}\)

\({D}_{B}\) :

Brownian diffusion coefficient, \({\mathrm{m}}^{2}{ \mathrm{s}}^{-1}\)

\({D}_{T}\) :

Thermophoretic diffusion coefficient, \({\mathrm{m}}^{2}{ \mathrm{s}}^{-1}\)

\({D}_{m}\) :

Microorganism’s diffusion coefficient, \({\mathrm{m}}^{2}{ \mathrm{s}}^{-1}\)

\({B}_{o}\) :

Constant magnetic field, \({\text{kgs}}^{ = 2 } {\text{A}}^{ - 1}\)

\(C\) :

Concentration, \({\text{kgm}}^{ - 3}\)

\({C}_{\infty }\) :

Ambient concentration, \({\text{kgm}}^{ - 3}\)

\({C}_{w}\) :

Surface concentration of nanoparticles, \({\text{kgm}}^{ - 3}\)

\(k\) :

Thermal conductivity, \({\text{m}} {\text{kgs}}^{ - 3} {\text{K}}^{ - 1}\)

\(T\) :

Temperature, \(\mathrm{K}\)

\({T}_{\infty }\) :

Ambient temperature, \(\mathrm{K}\)

\({T}_{f}\) :

Fluid temperature, \(\mathrm{K}\)

\(h(t)\) :

Coefficient of heat transfer, W \({\mathrm{m}}^{-2}{\mathrm{K}}^{-1}\)

\(N\) :

Microorganism’s profile, Dimensionless

\({N}_{w}\) :

Surface concentration of microorganisms, \({\text{kgm}}^{ - 3}\)

\({N}_{\infty }\) :

Ambient concentration of microorganisms, \({\text{kgm}}^{ - 3}\)

\({W}_{c}\) :

Maximum cell swimming speed, \(\mathrm{m}{ \mathrm{s}}^{-1}\)

\(x,y\) :

Cartesian coordinates, \(\mathrm{m}\)

\(\sigma \) :

Electrical conductivity, \({\text{S}}^{3} {\text{m}}^{2} {\text{kg}}^{ - 1}\)

\({\mathrm{u}}_{\mathrm{w}}\) :

Velocity of the sheet, \(\mathrm{m}{ \mathrm{s}}^{-1}\)

References

  1. Nadeem, S., Hussain, S.T., Lee, C.: Flow of a Williamson fluid over a stretching sheet. Braz. J. Chem. Eng. 30(3), 619–625 (2013)

    Article  Google Scholar 

  2. Ullah, Z., Zaman, G.: Lie group analysis of magnetohydrodynamic tangent hyperbolic fluid flow towards a stretching sheet with slip conditions. Heliyon 3(11), e00443 (2017)

    Article  Google Scholar 

  3. Hayat, T., Ullah, I., Alsaedi, A., Ahmad, B.: Modeling tangent hyperbolic nanoliquid flow with heat and mass flux conditions. Eur. J. Phys. Plus 132(112) (2017)

  4. Nagendramma, V., Leelarathnam, A., Raju, C.S.K., Shehzad, S.A., Hussain, T.: Doubly stratifified MHD tangent hyperbolic nanofluid flow due to permeable stretched cylinder. Res. Phys. 9, 23–32 (2018)

    Google Scholar 

  5. Kumar, S.G., Varma, S.V.K., Kumar, R.K., Raju, C.S.K., Shehzad, S.A. Bashir, M.N.: Three- dimensional hydromagnetic convective flow of chemically reactive Williamson fluid with non-uniform heat absorption and generation. Int. J. Chem. Reactor Eng. (2019)

  6. Al-Khaled, K., Khan, S.U., Khan, I.: Chemically reactive bioconvection flflow of tangent hyperbolic nanoliquid with gyrotactic microorganisms and nonlinear thermal radiation. Heliyon 6(1), e03117 (2020)

    Article  Google Scholar 

  7. Waqas, H., Kafait, A., Muhammad, T., Farooq, U.: Numerical study for bio-convection flflow of tangent hyperbolic nanoflfluid over a Riga plate with activation energy. Alex. Eng. J. 61(2), 1803–1814 (2021)

    Article  Google Scholar 

  8. Shafq, A., Lone, S.A., Sindhu, T.N., Al-Mdallal, Q.M., Rasool, G.: Statistical modeling for bioconvective tangent hyperbolic nanofuid towards stretching surface with zero mass fux condition. Sci. Rep. 11(1), 13869 (2021)

    Article  Google Scholar 

  9. Ali, B., Hussain, S., Naqvi, S.I., Habib, D., Abdal, S.: Aligned magnetic and bioconvection effects on tangent hyperbolic nanofluid flow across faster/slower stretching wedge with activation energy: finite element simulation. Int. J. Appl. Comput. Math. 7(4), 149 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hussain, S., Ahmad, F., Ayed, H., Malik, M.Y., Waqas, H., Al-Sawalha, M.M., Hussain, S.: Combined magnetic and porosity effects on flow of time-dependent tangent hyperbolic fluid with nanoparticles and motile gyrotactic microorganism past a wedge with second-order slip. Case Stud. Therm. Eng. 26(1), 109662 (2021)

    Google Scholar 

  11. Shafiq, A., Hammouch, Z., Sindhu, T.N.: Bioconvective MHD flow of tangent hyperbolic nanofluid with newtonian heating. Int. J. Mech. Sci. 133, 759–766 (2017)

    Article  Google Scholar 

  12. Ramzan, M., Gul, H., Kadry, S., Chu, Y.M.: Role of bioconvection in a three dimensional tangent hyperbolic partially ionized magnetized nanofluid flow with Cattaneo-Christov heat flux and activation energy. Int. Commun. Heat Mass Transf. 120, 104994 (2021)

    Article  Google Scholar 

  13. Zhao, T., Khan, M.R., Chu, Y., Issakhov, A., Ali, R., Khan, S.: Entropy generation approach with heat and mass transfer in magnetohydrodynamic stagnation point flow of a tangent hyperbolic nanofluid. Appl. Math. Mech. 42(8), 1205–1218 (2021). https://doi.org/10.1007/s10483-021-2759-5

    Article  MathSciNet  Google Scholar 

  14. Loganathan, K., Rajan, S.: An entropy approach of Williamson nanofluid flow with Joule heating and zero nanoparticle mass flux. J. Therm. Anal. Calorim. 141, 2599–2612 (2020)

    Article  Google Scholar 

  15. Gulzar, M.M., Aslam, A., Waqas, M., Javed, M.A., Hosseinzadeh, K.: A nonlinear mathematical analysis for magneto-hyperbolic-tangent liquid featuring simultaneous aspects of magnetic field, heat source and thermal stratification. Appl. Nanosci. 10(12), 4513–4518 (2020). https://doi.org/10.1007/s13204-020-01483-y

    Article  Google Scholar 

  16. Loganathan, K., Mohana, K., Mohanraj, M., Sakthivel, P., Rajan, S.: Impact of third-grade nanofluid flow across a convective surface in the presence of inclined Lorentz force: an approach to entropy optimization. J. Therm. Anal. Calorim. 144(5), 1935–1947 (2020)

    Article  Google Scholar 

  17. Hosseinzadeh, S., Kh Hosseinzadeh, A., Hasibi, DD Ganji.: Hydrothermal analysis on non-Newtonian nanofluid flow of blood through porous vessels. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. (2022). https://doi.org/10.1177/09544089211069211

    Article  Google Scholar 

  18. Nazeer, M., Hussain, F., Khan, M.I., Shahzad, Q., Chu, Y.M., Kadry, S.: MHD two-phase flow of Jeffrey fluid suspended with Hafnium and crystal particles: analytical treatment. Numer. Methods Partial Differ. Equ. (2021). https://doi.org/10.1002/num.22766

    Article  Google Scholar 

  19. Loganathan, K., Sivasankaran, S., Bhuvaneshwari, M., Rajan, S.: Second-order slip, cross-diffusion and chemical reaction effects on magneto-convection of Oldroyd-B liquid using Cattaneo-Christov heat flux with convective heating. J. Therm. Anal. Calorim. 136, 401–409 (2019)

    Article  Google Scholar 

  20. Yu-Ming, C., Fayyaz, A., Khan, M.I., Mubbashar, N., Farooq, H., Niaz, B.K., Seifedine, K., Liquan, M.: Numerical and scale analysis of non-Newtonian fluid (Eyring-Powell) through pseudo-spectral collocation method (PSCM) towards a magnetized stretchable Riga surface. Alex. Eng. J. 60(2), 2127–2137 (2021)

    Article  Google Scholar 

  21. Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. In: International Mechanical Engineering Congress and Exposition (1995)

  22. Bhatti, M.M., Rashdi, M.M.: Effects of the thermo diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching sheet. J. Mol. Liq. 221, 567–573 (2016)

    Article  Google Scholar 

  23. Hayat, T., Muhammad, K., Farooq, M., Alsaedi, A.: Melting heat transfer in stagnation point flow of carbon nanotubes towards variable thickness surface. AIP Adv. 5, 015214 (2016)

    Article  Google Scholar 

  24. Kumar, P.C.M., Kumar, C.M.A.: Numerical evaluation of cooling performances of semiconductor using CuO/water nanofluids. Heliyon 5(8), e02227 (2019)

    Article  Google Scholar 

  25. Ijaz, M., Ayub, M., Khan, H.: Entropy generation and activation energy mechanism in nonlinear radiative flow of Sisko n018anofluid: rotating disk. Heliyon 5(6), e01863 (2019)

    Article  Google Scholar 

  26. Ullah, K.S., Ali, S.S.: Brownian movement and thermophoretic aspects in third grade nanofluid over oscillatory moving sheet. Phys. Scr. 94(9), 095202 (2019)

    Article  Google Scholar 

  27. Fayaz, H., Nasrin, R., Rahim, N.A., Hasanuzzaman, M.: “Energy and exergy analysis of the PVT system: effect of nanofluid flow rate. Sol. Energy 169, 217–230 (2018)

    Article  Google Scholar 

  28. Ali, F., Zaib, A.: Unsteady flow of an Eyring-Powell nanofluid near stagnation point past a convectively heated stretching sheet. Arab J. Basic Appl. Sci. 26, 215–224 (2019)

    Article  Google Scholar 

  29. Olanrewaju, A.M., Salawu, S.O., Olanrewaju, P.O., Amoo, S.A.: “Unsteady radiative magnetohydromagnetic flow and entropy generation of maxwell nanofluids in a porous medium with arrhenius chemical kinetic. Cogent Eng. (2021). https://doi.org/10.1080/23311916.2021.1942639

    Article  Google Scholar 

  30. Khan, M.I., Khan, S.U., Jameel, M., Chu, Y.M., Tlili, I., Kadry, S.: Significance of temperature-dependent viscosity and thermal conductivity of Walter’s B nanoliquid when sinusodal wall and motile microorganisms density are significant. Surf. Interfaces 22, 100849 (2021). https://doi.org/10.1016/j.surfin.2020.100849

    Article  Google Scholar 

  31. Khan, M.I., Shah, F., Khan, S.U., Ghaffari, A., Chu, Y.M.: Heat and mass transfer analysis for bioconvective flow of Eyring Powell nanofluid over a Riga surface with nonlinear thermal features. Numer. Methods Partial Differ Equ. 38(4), 777–793 (2022)

    Article  MathSciNet  Google Scholar 

  32. Ahmad, I., Faisal, M., Loganathan, K., Kiyani, M.Z., Namgyel, N.: Nonlinear mixed convective bidirectional dynamics of double stratified radiative oldroyd-B nanofluid flow with heat source/sink and higher-order chemical reaction. Math. Probl. Eng. 2022, 9732083 (2022)

    Article  Google Scholar 

  33. Talebi Rostami, H., Fallah Najafabadi, M., Hosseinzadeh, K.H., Ganji, D.D.: Investigation of mixture-based dusty hybrid nanofluid flow in porous media affected by magnetic field using RBF method. Int. J. Ambient Energy (2022). https://doi.org/10.1080/01430750.2021.2023041

    Article  Google Scholar 

  34. Hosseinzadeh, K.H., Mardani, M.R., Salehi, S., Paikar, M., Ganji, D.D.: Investigation of micropolar hybrid nanofluid (Iron Oxide-Molybdenum Disulfide) flow across a sinusoidal cylinder in presence of magnetic field. Int. J. Appl. Comput. Math. (2021). https://doi.org/10.1007/s40819-021-01148-6

    Article  MathSciNet  MATH  Google Scholar 

  35. Eswaramoorthi, S., Thamaraiselvi, S., Loganathan, K.: Exploration of Darcy-Forchheimer flows of Non-Newtonian Casson and Williamson conveying tiny particles experiencing binary chemical reaction and thermal radiation: comparative analysis. Math. Comput. Appl. 27, 52 (2022). https://doi.org/10.3390/mca27030052

    Article  Google Scholar 

  36. Saini, S., Sharma, Y.D.: Double-diffusive bioconvection in a suspension of gyrotactic microorganisms saturated by nanofluids. Int. J. Appl. Fluid Mech. 12(1), 271–280 (2019)

    Article  Google Scholar 

  37. Dhanai, R., Rana, P., Kumar, L.: Lie group analysis for bioconvection MHD slip flow and heat transfer of nano fluid over an inclined sheet: multiple solution. J. Taiwan Inst. Chem. Eng. 66, 283–291 (2016)

    Article  Google Scholar 

  38. Mahdy, A.: Gyrotactic microorganisms mixed convection nanofluid flow along an isothermal vertical wedge in porousmedia. Int. J. Acrospace Mech. Eng. 11(4), 840–850 (2017)

    MathSciNet  Google Scholar 

  39. Avinash, K., Sandeep, N., Makinde, O.D., Animasaun, I.L.: Aligned magnetic field effect on radiative bioconvection flow past a vertical plate with thermophoresis and Brownian motion. Defect Diffus. Forum 377, 127–140 (2017)

    Article  Google Scholar 

  40. Makinde, O.D., Animasaun, I.L.: Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution. J. Mol. Liq. 221, 733–743 (2016)

    Article  Google Scholar 

  41. Khan, W.A., Makinde, O.D., Khan, Z.H.: MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip. Int. J. Heat Mass Transf. 221, 733–743 (2016)

    Google Scholar 

  42. Mutuku, W.N., Makind, O.D.: Hydromagnetic bioconvection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms. Comput. Fluids 95(6), 88–97 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Khan, W.A., Makinde, O.D.: MHD nanofluid bioconvection due to gyrotactic microorganisms over a convectively heat stretching sheet. Int. J. Therm. Sci. 81, 118–124 (2014)

    Article  Google Scholar 

  44. Hayat, T., Khan, M.I., Waqas, M., Alsaedi, A.: Stagnation point flow of hyperbolic tangent fluid with Soret-Dufour effects. Res. Phys. 7, 2711–3271 (2017)

    Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

Corresponding author

Correspondence to K. Loganathan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, F., Loganathan, K., Eswaramoorthi, S. et al. Bioconvective Applications of Unsteady Slip Flow Over a Tangent Hyperbolic Nanoliquid with Surface Heating: Improving Energy System Performance. Int. J. Appl. Comput. Math 8, 276 (2022). https://doi.org/10.1007/s40819-022-01476-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-022-01476-1

Keywords

Navigation