Skip to main content
Log in

Inverse Population Dynamics Problem Employing a Low Cost Integral Transform Solution and Bayesian Inference with Approximation Error Model

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Population dynamics modeling is a subject of major relevance, especially when involving human or livestock disease vectors. Such importance is due to the fact that there are several diseases that are spread by some particular species, and the knowledge on the behavior of such populations is relevant when it is intended to create public policies to control their proliferation. This work describes a problem of population dynamics with diffusive behavior, with impulsive culling and delayed reproduction. The direct problem describes the space and time evolution of the population density when the model parameters are known, and the solution of the partial differential equation is obtained with the Generalized Integral Transform Technique (GITT), a hybrid numerical-analytical approach. For practical purposes it is crucial to fit the model to a population of interest, by estimating the equation coefficients through an inverse problem approach. In this work the inverse problem is illustrated within the Bayesian framework employing a low-cost direct problem solution, and the Approximation Error Model is used to take in account the error introduced by the low-cost solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of data and material

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

b :

Birth rate function

\(B_j\) :

Impulsive culling sites intensities

C :

Logistic parameter growth

d :

Death rate function

D :

Dispersion constant coefficient

g :

Source term

K :

Constant capacity

L :

Space domain width

M :

Subregions of integration

N :

Truncation order

\(N_{cs}\) :

Number of culling sites

\(N_D\) :

Number of experimental data

\(N_R\) :

Reduced truncation order

\(N_i\) :

Norms

\(N_S\) :

Number of samples

P :

Logistic parameter growth

u :

Adult population density

\(u_0\) :

Initial adult population density

\(U_C\) :

High order solution

\(U_R\) :

Reduced order solution

\(x_j\) :

Location of culling sites

\({\mathbf {Y}}\) :

Vector of measurements

\(\delta \) :

Dirac delta function

\(\epsilon _i(.)\) :

Modeling error

\(e_i\) :

Experimental noise for ith measurement

\(\lambda \) :

Eigenvalue corresponding to the eigenfunction \(\psi \)

\(\mu \) :

Premature death rate

\(\mu _e\) :

Mean

\(\pi \) :

Probability density

\(\tau \) :

Reproduction time delay

\(\sigma \) :

Standard deviation

\(\psi \) :

Eigenfunction

\(\sim \) :

Normalized eigenfunction

References

  1. Malthus, T.R.: An essay on the principle of population (Printed for J. Johnson, in St. Pauls Church-Yard, London) (1798)

  2. Verhulst, P.F.: Notice surlaloique la population poursuitdans son accroissement. Correspondance (1838)

  3. Skellam, J.G.: Random dispersal in theoretical populations. Biometrika 38(1/2), 196–218 (1951)

    Article  MathSciNet  Google Scholar 

  4. Okubo, A.: Diffusion and Ecological Problems: Mathematical Models. Biomathematics Texts. Springer, Berlin (1980)

    MATH  Google Scholar 

  5. Okubo, A., Levin, S.A.: Diffusion and Ecological Problems: Modern Perspectives, vol. 14. Springer, Berlin (2001)

    Book  Google Scholar 

  6. Simons, R.R.L., Gourley, S.A.: Extinction criteria in stage-structured population models with impulsive culling. SIAM J. Appl. Math. 66(6), 1853–1870 (2006)

    Article  MathSciNet  Google Scholar 

  7. White, R.E.: Populations with impulsive culling: control and identification. Int. J. Comput. Math. 86(12), 2143–2164 (2009)

    Article  MathSciNet  Google Scholar 

  8. Mocenni, C., Madeo, D., Sparacino, E.: Linear least squares parameter estimation of nonlinear reaction diffusion equations. Math. Comput. Simul. 81(10), 2244–2257 (2011)

    Article  MathSciNet  Google Scholar 

  9. Knupp, D.C., Sacco, W.F., Silva Neto, A.J.: Direct and inverse analysis of diffusive logistic population evolution with time delay and impulsive culling via integral transforms and hybrid optimization. Appl. Math. Comput. 250, 105–120 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Anguelov, R., Dufourd, C., Dumont, Y.: Simulations and parameter estimation of a trap-insect model using a finite element approach. Math. Comput. Simul. 133, 47–75 (2017)

    Article  MathSciNet  Google Scholar 

  11. Moura Neto, F.D., Silva Neto, A.J.: An Introduction to Inverse Problems with Applications. Springer, Berlin (2013)

    Book  Google Scholar 

  12. Kaipio, J.P., Somersalo, E.: Computational and statistical methods for inverse problems. Appl. Math. Sci. 160, 2004 (2004)

    Google Scholar 

  13. Teixeira, J.S., Stutz, L.T., Knupp, D.C., Silva Neto, A.J.: Structural damage identification via time domain response and Markov chain monte Carlo method. Inverse Probl. Sci. Eng. 25(6), 909–935 (2017)

    Article  MathSciNet  Google Scholar 

  14. Mirsian, S., Khodadadian, A., Hedayati, M., Ajdad, A.M., Kalantarinejad, R., Heitzinger, C.: A new method for selective functionalization of silicon nanowire sensors and Bayesian inversion for its parameters. Biosens. Bioelectron. 142, 111527 (2019)

    Article  Google Scholar 

  15. Khodadadian, A., Noii, N., Parvizi, M., Abbaszadeh, M., Wick, T., Heitzinger, C.: A Bayesian estimation method for variational phase-field fracture problems. Comput. Mech. 66(4), 827–849 (2020)

    Article  MathSciNet  Google Scholar 

  16. Khodadadian, A., Stadlbauer, B., Heitzinger, C.: Bayesian inversion for nanowire field-effect sensors. J. Comput. Electron. 19(1), 147–159 (2020)

    Article  Google Scholar 

  17. Noii, N., Khodadadian, A., Wick, T.: Bayesian inversion for anisotropic hydraulic phase-field fracture. arXiv preprint arXiv:2007.16038 (2020)

  18. Noii, N., Khodadadian, A., Ulloa, J., Aldakheel, F., Wick, T., Francois, S., Wriggers, P.: Bayesian inversion for unified ductile phase-field fracture. arXiv preprint arXiv:2104.11114 (2021)

  19. Zhao, H., Chen, B., Li, S., Li, Z., Zhu, C.: Updating the models and uncertainty of mechanical parameters for rock tunnels using Bayesian inference. Geosci. Front. 12(5), 101198 (2021)

    Article  Google Scholar 

  20. Lamiena, B., Orlande, H.R.B.: Approximation error model to account for convective effects in liquids characterized by the line heat source probe. In Proceedings of the 4th Inverse Problems, Design and Optimization Symposium, Albi, France (2013)

  21. Cotta, R.M.: Integral Transforms in Computational Heat and Fluid Flow. CRC Press, Boca Raton (1993)

    MATH  Google Scholar 

  22. Sphaier, L.A., Cotta, R.M., Naveira Cotta, C., Quaresma, J.N.N.: The unit algorithm for solving one-dimensional convection–diffusion problems via integral transforms. Int. Commun. Heat Mass Transf. 38(5), 565–571 (2011)

    Article  Google Scholar 

  23. Cotta, R.M., Knupp, D.C., Naveira Cotta, C.P.: Analytical Heat and Fluid Flow in Microchannels and Microsystems. Springer, Berlin (2016)

    Book  Google Scholar 

  24. Gamerman, D., Lopes, H.F.: Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference. CRC Press, Boca Raton (2006)

    Book  Google Scholar 

  25. Nissinen, A., Heikkinen, L.M., Kaipio, J.P.: The bayesian approximation error approach for electrical impedance tomography-experimental results. Meas. Sci. Technol. 19(1), 015501 (2007)

    Article  Google Scholar 

  26. Heidelberger, P., Welch, P.D.: A spectral method for confidence interval generation and run length control in simulations. Commun. ACM 24(4), 233–245 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This study was financed in part by CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil, Finance Code 001. The authors would like also to thank the other sponsoring agencies, CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico, FAPERJ - Fundação Carlos Chagas Filho de Amparo ã Pesquisa do Estado do Rio de Janeiro, and Instituto Federal Fluminense.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: DCK, AJSN; methodology: MSF, DCK, LTS, LAS; data curation: MSF, DCK; validation: MSF, DCK; writing–original draft preparation: MSF, DCK; writing–review and editing: MSF, DCK, LTS, LAS, AJSN; funding acquisition: AJSN, DCK.

Corresponding author

Correspondence to Diego C. Knupp.

Ethics declarations

Competing interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friguis, M.S., Knupp, D.C., Abreu, L.A.S. et al. Inverse Population Dynamics Problem Employing a Low Cost Integral Transform Solution and Bayesian Inference with Approximation Error Model. Int. J. Appl. Comput. Math 7, 189 (2021). https://doi.org/10.1007/s40819-021-01120-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01120-4

Keywords

Navigation